Local brain-state dependency of effective connectivity: A pilot TMS-EEG study
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2022
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
Series
Open Research Europe, Volume 2
Abstract
Background: Spontaneous cortical oscillations have been shown to modulate cortical responses to transcranial magnetic stimulation (TMS). However, whether these oscillations influence cortical effective connectivity is largely unknown. We conducted a pilot study to set the basis for addressing how spontaneous oscillations affect cortical effective connectivity measured through TMS-evoked potentials (TEPs). Methods: We applied TMS to the left primary motor cortex and right pre-supplementary motor area of three subjects while recording EEG. We classified trials off-line into positive- and negative-phase classes according to the mu and beta rhythms. We calculated differences in the global mean-field amplitude (GMFA) and compared the cortical spreading of the TMS-evoked activity between the two classes. Results: Phase affected the GMFA in four out of 12 datasets (3 subjects × 2 stimulation sites × 2 frequency bands). Two of the observed significant intervals were before 50 ms, two between 50 and 100 ms, and one after 100 ms post-stimulus. Source estimates showed complex spatial differences between the classes in the cortical spreading of the TMS-evoked activity. Conclusions: TMS-evoked effective connectivity seems to depend on the phase of local cortical oscillations at the stimulated site. This work paves the way to design future closed-loop stimulation paradigms.Description
| openaire: EC/H2020/810377/EU//ConnectToBrain
Keywords
Transcranial magnetic stimulation; electroencephalography; brain state; effective connectivity
Other note
Citation
Granö, I, Mutanen, T P, Tervo, A, Nieminen, J O, Souza, V H, Fecchio, M, Rosanova, M, Lioumis, P & Ilmoniemi, R J 2022, ' Local brain-state dependency of effective connectivity: A pilot TMS-EEG study ', Open Research Europe, vol. 2, 45 . https://doi.org/10.12688/openreseurope.14634.2