Self-assembly of a catalytically active lipopeptide and its incorporation into cubosomes
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2019-08-19
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
3639-3647
3639-3647
Series
ACS Applied Bio Materials, Volume 2, issue 8
Abstract
The self-assembly and biocatalytic activity of the proline-functionalized lipopeptide PRW-NH-C16 are examined and compared to that of the related PRW-O-C16 lipopeptide, which differs in having an ester linker between the lipid chain and tripeptide headgroup instead of an amide linker. Lipopeptide PRW-NH-C16 self-assembles into spherical micelles above a critical aggregation concentration, similar to the behavior of PRW-O-C16 reported previously [B. M. Soares et al. Phys. Chem. Chem. Phys., 2017, 19, 1181 - 1189]. However, PRW-NH-C16 shows an improved catalytic activity in a model aldol reaction. In addition, we explore the incorporation of the biocatalytic lipopeptide into lipid cubosomes. SAXS shows that increasing lipopeptide concentration leads to an expansion of the monoolein cubosome lattice spacing and a loss of long-range cubic order as the lipopeptide is encapsulated in the cubosomes. At higher loadings of lipopeptide, reduced cubosome formation is observed at the expense of vesicle formation. Our results show that the peptide-lipid chain linker does not influence self-assembly but does impart an improved biocatalytic activity. Furthermore, we show that lipopeptides can be incorporated into lipid cubosomes, leading to restructuring into vesicles at high loadings. These findings point the way toward the future development of bioactive lipopeptide assemblies and slow release cubosome-based delivery systems.Description
Keywords
aldol reaction, catalysis, cubosomes, lipopeptides, micelles, peptide amphiphiles, self-assembly
Other note
Citation
Castelletto , V , Edwards-Gayle , C J C , Hamley , I W , Pelin , J N B D , Alves , W A , Aguilar , A M , Seitsonen , J & Ruokolainen , J 2019 , ' Self-assembly of a catalytically active lipopeptide and its incorporation into cubosomes ' , ACS Applied Bio Materials , vol. 2 , no. 8 , pp. 3639-3647 . https://doi.org/10.1021/acsabm.9b00489