Designing artificial moiré van der Waals topological superconductivity

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorLiljeroth, Peter, Prof., Aalto University, Department of Applied Physics, Finland
dc.contributor.authorKhosravian, Maryam
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labCorrelated Quantum Materials (CQM) groupen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorLado, Jose, Prof., Aalto University, Department of Applied Physics, Finland
dc.date.accessioned2024-01-11T10:00:27Z
dc.date.available2024-01-11T10:00:27Z
dc.date.defence2024-01-26
dc.date.issued2023
dc.description.abstractThe study of topological superconductivity is a promising field in condensed matter physics that has exciting possibilities for the emergence of exotic quantum phenomena and topological quantum computing. In this thesis, we investigate various platforms for engineering topological superconductivity, focusing on the role of quasiperiodicity and van der Waals materials featuring moiré patterns. The first scheme concentrates on quasiperiodic systems and their capability to generate robust spin-triplet superconducting pairings through coexisting orders, establishing a new strategy for engineering unconventional superconductivity. In the second scheme, we focus on specific van der Waals heterostructures showing moiré patterns. We examine the role of impurities in designer topological moiré superconductors that combine van der Waals magnetic and superconducting materials, focusing on the interplay between atomic and moiré length scales within these artificial moiré systems explored with conventional tools and machine learning. In the third scheme, we focus on hybrid van der Waals heterostructures based on twisted graphene bilayers, magnets, and superconductors, establishing their potential as a versatile platform for engineering artificial topological  superconductivity. Our results showcase the potential of designer platforms, such as quasiperiodicity and moiré-patterned van der Waals materials, to harness and manipulate these intriguing quantum states. Our findings establish new strategies for developing quantum technologies based on topological superconducting quantum materials and further enrich our understanding of exotic quantum matter.en
dc.format.extent103 + app. 73
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-1599-4 (electronic)
dc.identifier.isbn978-952-64-1598-7 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125676
dc.identifier.urnURN:ISBN:978-952-64-1599-4
dc.language.isoenen
dc.opnPrada, Elsa. Dr., Instituto de Ciencia de Materiales de Madrid (ICMM), Spain
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Maryam Khosravian and Jose L. Lado. Quasiperiodic criticality and spin-triplet superconductivity in superconductor-antiferromagnet moiré patterns. Physical Review Research, 3, 013262, March 2021. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202103312698. DOI: 10.1103/PhysRevResearch.3.013262
dc.relation.haspart[Publication 2]: Maryam Khosravian and Jose L. Lado. Impurity-induced excitations in a topological two-dimensional ferromagnet/superconductor van der Waals moiré heterostructure. Physical Review Materials, 6, 094010, September 2022. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202210196075. DOI: 10.1103/PhysRevMaterials.6.094010
dc.relation.haspart[Publication 3]: Guangze Chen, Maryam Khosravian, Jose L. Lado, Aline Ramires. Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation. 2D Materials, 9, 024002, February 2022. Full text in Acris/Aaltodoc: https://urn.fi/URN:NBN:fi:aalto-202205243410. DOI: 10.1088/2053-1583/ac4af8
dc.relation.haspart[Publication 4]: Maryam Khosravian, Leni Bascones, Jose L. Lado. Moiré-enabled artificial topological superconductivity in twisted bilayer graphene. Submitted to 2D Materials, July 2023. DOI: 10.48550/arXiv.2307.04605
dc.relation.haspart[Publication 5]: Maryam Khosravian, Rouven Koch, Jose L. Lado. Hamiltonian learning with real-space impurity tomography in topological moiré superconductors. Submitted to Journal of Physics: Materials, August 2023. DOI: 10.48550/arXiv.2308.11400
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries225/2023
dc.revCastro, Eduardo V., Prof., University of Porto, Portugal
dc.revVergniory, Maia G., Dr., Donostia International Physics Center, Spain
dc.subject.keywordunconventional superconductivityen
dc.subject.keywordtopological superconductivityen
dc.subject.keywordVan der waals materialsen
dc.subject.otherPhysicsen
dc.titleDesigning artificial moiré van der Waals topological superconductivityen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2024-01-26_1140
local.aalto.archiveyes
local.aalto.formfolder2024_01_11_klo_08_22
local.aalto.infraScience-IT

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526415994.pdf
Size:
16.72 MB
Format:
Adobe Portable Document Format