Stable Reference Electrode in Polymer Electrolyte Membrane Electrolyser for Three-Electrode Measurements

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-12-05

Major/Subject

Mcode

Degree programme

Language

en

Pages

F1326-F1336

Series

Journal of the Electrochemical Society, Volume 166, issue 16

Abstract

In this study, various methods to study individual electrodes in polymer electrolyte membrane cells are reviewed and a novel reference electrode design is developed for a laboratory scale single cell polymer electrolyte membrane water electrolyser. The design uses an internal pseudo-reference electrode which is proven to enable galvanostatic electrochemical impedance spectroscopy studies. The setup is used to study the state-of-the-art electrode materials with high loadings in a start-stop cycling durability test. The cycled catalyst layers are characterized ex-situ with SEM, TEM and XRD. As a result, on the anode the mass transport resistance increases, the macro porosity increases and a structural change from amorphous IrOx towards crystalline IrO2 is detected. On the cathode the platinum particle size increases and an intensifying corrosion phenomenon is detected. In overall, this degradation has still low effect on the full cell performance during the studied 1750 hours. However, there is a clear indication that if the start-stop cycling is further continued, the cell will experience a dramatic performance loss much sooner than when operating it in a constant current mode.

Description

Keywords

PEM Electrolyser, Reference Electrode, Three-Electrode Setup, Hydrogen Evolution Reaction, Oxygen Evolution Reaction

Other note

Citation

Sorsa, O, Nieminen, J, Kauranen, P & Kallio, T 2019, ' Stable Reference Electrode in Polymer Electrolyte Membrane Electrolyser for Three-Electrode Measurements ', Journal of the Electrochemical Society, vol. 166, no. 16, pp. F1326-F1336 . https://doi.org/10.1149/2.0461916jes