Social media data analysis in urban e-planning

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2017-10

Major/Subject

Mcode

Degree programme

Language

en

Pages

14
18-31

Series

INTERNATIONAL JOURNAL OF E-PLANNING RESEARCH, Volume 6, issue 4

Abstract

Computational social media data analysis (SMDA) is opening up new possibilities for participatory urban planning. The aim of this study is to analyse what kind of computational methods can be used to analyse social media data to inform urban planning. A descriptive literature review of recent case study articles reveal that in this context SMDA has been applied mainly to location based social media data, such as geo-tagged Tweets, photographs and check-in data. There were only a few studies concerning the use of non-place-based data. Based on this review SMDA can provide planners with local knowledge about people's opinions, experiences, feelings, behaviour, and about the city structure. However, integration of this knowledge in planning and decision-making has not been completely successful in any of the cases. By way of a conclusion, a planning-led categorization of the SMDA method's tools and analysis results is suggested.

Description

Keywords

Citizen Participation, Computational Methods, Content Analysis, Literature Review, Location Based Social Media, Machine Learning, Network Analysis, Spatial Data Mining, Text Mining, Urban Planning

Other note

Citation

Nummi, P 2017, ' Social media data analysis in urban e-planning ', International Journal of E-Planning Research, vol. 6, no. 4, pp. 18-31 . https://doi.org/10.4018/IJEPR.2017100102