Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorYao, Yulingen_US
dc.contributor.authorPirš, Gregoren_US
dc.contributor.authorVehtari, Akien_US
dc.contributor.authorGelman, Andrewen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Vehtari Akien
dc.contributor.organizationUniversity of Ljubljanaen_US
dc.contributor.organizationColumbia Universityen_US
dc.contributor.organizationSimons Foundationen_US
dc.date.accessioned2022-12-14T10:15:35Z
dc.date.available2022-12-14T10:15:35Z
dc.date.issued2022-12en_US
dc.descriptionPublisher Copyright: © 2022 International Society for Bayesian Analysis
dc.description.abstractStacking is a widely used model averaging technique that asymptotically yields optimal predictions among linear averages. We show that stacking is most effective when model predictive performance is heterogeneous in inputs, and we can further improve the stacked mixture with a hierarchical model. We generalize stacking to Bayesian hierarchical stacking. The model weights are varying as a function of data, partially-pooled, and inferred using Bayesian inference. We further incorporate discrete and continuous inputs, other structured priors, and time series and longitudinal data. To verify the performance gain of the proposed method, we derive theory bounds, and demonstrate on several applied problems.en
dc.description.versionPeer revieweden
dc.format.extent29
dc.format.extent1043-1071
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYao, Y, Pirš, G, Vehtari, A & Gelman, A 2022, ' Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful ', Bayesian Analysis, vol. 17, no. 4, pp. 1043-1071 . https://doi.org/10.1214/21-BA1287en
dc.identifier.doi10.1214/21-BA1287en_US
dc.identifier.issn1936-0975
dc.identifier.otherPURE UUID: 26431c04-d548-402e-98c8-c8ea3c265a96en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/26431c04-d548-402e-98c8-c8ea3c265a96en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85139205468&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94628015/Bayesian_Hierarchical_Stacking.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118128
dc.identifier.urnURN:NBN:fi:aalto-202212146868
dc.language.isoenen
dc.publisherINT SOC BAYESIAN ANALYSIS
dc.relation.ispartofseriesBayesian Analysisen
dc.relation.ispartofseriesVolume 17, issue 4en
dc.rightsopenAccessen
dc.subject.keywordBayesian hierarchical modelingen_US
dc.subject.keywordConditional predictionen_US
dc.subject.keywordCovariate shiften_US
dc.subject.keywordModel averagingen_US
dc.subject.keywordPrior constructionen_US
dc.subject.keywordStackingen_US
dc.titleBayesian Hierarchical Stacking: Some Models Are (Somewhere) Usefulen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files