Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Yao, Yuling | en_US |
dc.contributor.author | Pirš, Gregor | en_US |
dc.contributor.author | Vehtari, Aki | en_US |
dc.contributor.author | Gelman, Andrew | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Professorship Vehtari Aki | en |
dc.contributor.organization | University of Ljubljana | en_US |
dc.contributor.organization | Columbia University | en_US |
dc.contributor.organization | Simons Foundation | en_US |
dc.date.accessioned | 2022-12-14T10:15:35Z | |
dc.date.available | 2022-12-14T10:15:35Z | |
dc.date.issued | 2022-12 | en_US |
dc.description | Publisher Copyright: © 2022 International Society for Bayesian Analysis | |
dc.description.abstract | Stacking is a widely used model averaging technique that asymptotically yields optimal predictions among linear averages. We show that stacking is most effective when model predictive performance is heterogeneous in inputs, and we can further improve the stacked mixture with a hierarchical model. We generalize stacking to Bayesian hierarchical stacking. The model weights are varying as a function of data, partially-pooled, and inferred using Bayesian inference. We further incorporate discrete and continuous inputs, other structured priors, and time series and longitudinal data. To verify the performance gain of the proposed method, we derive theory bounds, and demonstrate on several applied problems. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 29 | |
dc.format.extent | 1043-1071 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Yao, Y, Pirš, G, Vehtari, A & Gelman, A 2022, ' Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful ', Bayesian Analysis, vol. 17, no. 4, pp. 1043-1071 . https://doi.org/10.1214/21-BA1287 | en |
dc.identifier.doi | 10.1214/21-BA1287 | en_US |
dc.identifier.issn | 1936-0975 | |
dc.identifier.other | PURE UUID: 26431c04-d548-402e-98c8-c8ea3c265a96 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/26431c04-d548-402e-98c8-c8ea3c265a96 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85139205468&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/94628015/Bayesian_Hierarchical_Stacking.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/118128 | |
dc.identifier.urn | URN:NBN:fi:aalto-202212146868 | |
dc.language.iso | en | en |
dc.publisher | INT SOC BAYESIAN ANALYSIS | |
dc.relation.ispartofseries | Bayesian Analysis | en |
dc.relation.ispartofseries | Volume 17, issue 4 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Bayesian hierarchical modeling | en_US |
dc.subject.keyword | Conditional prediction | en_US |
dc.subject.keyword | Covariate shift | en_US |
dc.subject.keyword | Model averaging | en_US |
dc.subject.keyword | Prior construction | en_US |
dc.subject.keyword | Stacking | en_US |
dc.title | Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |