Parallel-in-Time Probabilistic Solutions for Time-Dependent Nonlinear Partial Differential Equations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorIqbal, Sahelen_US
dc.contributor.authorAbdulsamad, Hanyen_US
dc.contributor.authorCator, Trippen_US
dc.contributor.authorBraga-Neto, Ulissesen_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationTexas A&M Universityen_US
dc.date.accessioned2024-11-26T06:42:32Z
dc.date.available2024-11-26T06:42:32Z
dc.date.issued2024-11en_US
dc.description.abstractWe present an efficient probabilistic solver for time-dependent nonlinear partial differential equations. We formulate our method as the maximum a posteriori solver for a constrained risk problem on a reproducing kernel Hilbert space induced by a spatiotemporal Gaussian process prior. We show that for a suitable choice of temporal kernels, the risk objective can be minimized efficiently via a Gauss-Newton algorithm corresponding to an iterated extended Kalman smoother (IEKS). Furthermore, by leveraging a parallel-in-time implementation of IEKS, our algorithm can take advantage of massively parallel graphical processing units to achieve logarithmic instead of linear scaling with time. We validate our method numerically on popular benchmark problems.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationIqbal, S, Abdulsamad, H, Cator, T, Braga-Neto, U & Särkkä, S 2024, Parallel-in-Time Probabilistic Solutions for Time-Dependent Nonlinear Partial Differential Equations . in 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) . IEEE International Workshop on Machine Learning for Signal Processing, IEEE, IEEE International Workshop on Machine Learning for Signal Processing, London, United Kingdom, 22/09/2024 . https://doi.org/10.1109/MLSP58920.2024.10734739en
dc.identifier.doi10.1109/MLSP58920.2024.10734739en_US
dc.identifier.isbn979-8-3503-7225-0
dc.identifier.otherPURE UUID: 52d998cb-a298-4c2b-ba4a-fc4721639ce7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/52d998cb-a298-4c2b-ba4a-fc4721639ce7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85210559250&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/164895920/MLSP_IEKS.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131950
dc.identifier.urnURN:NBN:fi:aalto-202411267462
dc.language.isoenen
dc.relation.ispartof2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP)
dc.relation.ispartofIEEE International Workshop on Machine Learning for Signal Processingen
dc.rightsopenAccessen
dc.subject.keywordparallel algorithmen_US
dc.subject.keywordpartial differential equationsen_US
dc.subject.keywordprobabilistic numericsen_US
dc.subject.keywordparallel computationen_US
dc.subject.keywordsparse optimizationen_US
dc.subject.keywordkernel methodsen_US
dc.titleParallel-in-Time Probabilistic Solutions for Time-Dependent Nonlinear Partial Differential Equationsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files