Training methods for climate and neural network models

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorKivinen, Jyri, Dr., Aalto University, Department of Computer Science, Finland
dc.contributor.authorAbbas, Mudassar
dc.contributor.departmentTietotekniikan laitosfi
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.labComplex Systemsen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorKaski, Kimmo, Prof., Aalto University, Department of Computer Science, Finland
dc.date.accessioned2018-10-25T09:03:19Z
dc.date.available2018-10-25T09:03:19Z
dc.date.defence2018-11-15
dc.date.issued2018
dc.description.abstractWhen modeling complex phenomena in nature and in technological systems, one is often faced with  the task of tuning/calibrating the models. In such cases, there typically exists a need for model  parameter (and/or meta-parameter) value tuning for more effective modeling performance. Often such cannot be done manually, and in the machine learning approach, the tuning is done in an algorithmic and data-driven manner, and is called model training. The thesis presents studies in which such methods are adopted, in the contexts of climate and artificial neural networks, and proposes novel techniques. One of the studies is on the suitability of a well-known machine learning method called Bayesian optimization (BO), for parametric tuning of chaotic systems such as climate and numerical weatherprediction (NWP) models. The obtained results show that BO is a suitable method for such tuning tasks. A major desiderata for a trained machine learning model is the ability to generalize well to unseen data, and thus the phenomena such as (so-called) under- and overfitting are to be avoided. In this context, adopting (so-called) regularization methods as part of the model training process has become a standard procedure. In this thesis, we introduce a regularization framework that is shown to have close connections with many existing state-of-the-art regularization approaches. An adversarial variant, derived from the proposed regularization framework, is used for solving a classification task, and the obtained results are compared to those of other regularization methods.en
dc.format.extent56 + app. 76
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-8259-2 (electronic)
dc.identifier.isbn978-952-60-8258-5 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/34496
dc.identifier.urnURN:ISBN:978-952-60-8259-2
dc.language.isoenen
dc.opnHeikkonen, Jukka, Dr., University of Turku, Finland
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Solonen, A., Hakkarainen, J., Ilin, A., Abbas, M., Bibov, A. Estimating model error covariance matrix parameters in extended Kalman filtering. Nonlinear Processes in Geophysics, 21, 5, 919–927, 2014. DOI: 10.5194/npg-21-919-2014
dc.relation.haspart[Publication 2]: Abbas, M., Ilin, A., Solonen, M., Hakkarainen, J., Oja, E., Järvinen, H. Bayesian optimization for tuning chaotic systems. Nonlin. Processes Geophys. Discuss., 1, 1283–1312, 2014. DOI: 10.5194/npgd-1-1283-2014
dc.relation.haspart[Publication 3]: Abbas, M., Ilin, A., Solonen, M., Hakkarainen, J., Oja, E., Järvinen, H. Empirical evaluation of Bayesian optimization in parametric tuning of chaotic systems. Int. J. Uncertainty Quantification, 6, 6, 467–485, 2016. DOI: 10.1615/Int.J.UncertaintyQuantification.2016016645
dc.relation.haspart[Publication 4]: Abbas, M., Kivinen, J., Raiko, T. Understanding regularization by virtual adversarial training, ladder networks and others. In International Conference on Learning Representations (ICLR) Workshop track, Puerto Rico, May 2016
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries209/2018
dc.revRoos, Teemu, Prof., University of Helsinki, Finland
dc.revPahikkala, Tapio, Prof., University of Turku, Finland
dc.subject.keywordchaotic systemsen
dc.subject.keywordfilteringen
dc.subject.keywordbayesian optimizationen
dc.subject.otherComputer scienceen
dc.titleTraining methods for climate and neural network modelsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked
local.aalto.archiveyes
local.aalto.formfolder2018_10_25_klo_11_54
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526082592.pdf
Size:
1012.99 KB
Format:
Adobe Portable Document Format