Classification of Trash and Valuables with Machine Vision in Shared Cars

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJayawickrama, Nilushaen_US
dc.contributor.authorOjala, Ristoen_US
dc.contributor.authorPirhonen, Jesseen_US
dc.contributor.authorKivekas, Klausen_US
dc.contributor.authorTammi, Karien_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMechatronicsen
dc.date.accessioned2022-07-01T08:11:34Z
dc.date.available2022-07-01T08:11:34Z
dc.date.issued2022-06en_US
dc.description.abstractThis study focused on the possibility of implementing a vision-based architecture to monitor and detect the presence of trash or valuables in shared cars. The system was introduced to take pictures of the rear seating area of a four-door passenger car. Image capture was performed with a stationary wide-angled camera unit, and image classification was conducted with a prediction model in a remote server. For classification, a convolutional neural network (CNN) in the form of a fine-tuned VGG16 model was developed. The CNN yielded an accuracy of 91.43% on a batch of 140 test images. To determine the correlation among the predictions, a confusion matrix was used, and in addition, for each predicted image, the certainty of the distinct output classes was examined. The execution time of the system, from capturing an image to displaying the results, ranged from 5.7 to 17.2 s. Misclassifications from the prediction model were observed in the results primarily due to the variation in ambient light levels and shadows within the images, which resulted in the target items lacking contrast with their neighbouring background. Developments pertaining to the modularity of the camera unit and expanding the dataset of training images are suggested for potential future research.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJayawickrama, N, Ojala, R, Pirhonen, J, Kivekas, K & Tammi, K 2022, ' Classification of Trash and Valuables with Machine Vision in Shared Cars ', Applied Sciences, vol. 12, no. 11, 5695 . https://doi.org/10.3390/app12115695en
dc.identifier.doi10.3390/app12115695en_US
dc.identifier.issn2076-3417
dc.identifier.otherPURE UUID: 0031c550-7170-46f3-a73a-5ac08a6206ceen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0031c550-7170-46f3-a73a-5ac08a6206ceen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85131885818&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/84800425/applsci_12_05695_v2.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/115474
dc.identifier.urnURN:NBN:fi:aalto-202207014314
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesAPPLIED SCIENCESen
dc.relation.ispartofseriesVolume 12, issue 11en
dc.rightsopenAccessen
dc.subject.keywordvision-baseden_US
dc.subject.keywordshared carsen_US
dc.subject.keywordprediction modelen_US
dc.subject.keywordclassificationen_US
dc.subject.keywordconvolutional neural networken_US
dc.subject.keywordcamera moduleen_US
dc.subject.keywordWASTE MANAGEMENTen_US
dc.subject.keywordDEEPen_US
dc.subject.keywordGARBAGEen_US
dc.subject.keywordMODELen_US
dc.titleClassification of Trash and Valuables with Machine Vision in Shared Carsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files