Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sundin, Iiris | en_US |
dc.contributor.author | Peltola, Tomi | en_US |
dc.contributor.author | Micallef, Luana | en_US |
dc.contributor.author | Afrabandpey, Homayun | en_US |
dc.contributor.author | Soare, Marta | en_US |
dc.contributor.author | Majumder, Muntasir Mamun | en_US |
dc.contributor.author | Daee, Pedram | en_US |
dc.contributor.author | He, Chen | en_US |
dc.contributor.author | Serim, Baris | en_US |
dc.contributor.author | Havulinna, Aki | en_US |
dc.contributor.author | Heckman, Caroline | en_US |
dc.contributor.author | Jacucci, Giulio | en_US |
dc.contributor.author | Marttinen, Pekka | en_US |
dc.contributor.author | Kaski, Samuel | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Centre of Excellence in Computational Inference, COIN | en |
dc.contributor.organization | Institute for Molecular Medicine Finland | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.date.accessioned | 2018-08-01T13:35:44Z | |
dc.date.available | 2018-08-01T13:35:44Z | |
dc.date.issued | 2018-06-27 | en_US |
dc.description.abstract | Motivation Precision medicine requires the ability to predict the efficacies of different treatments for a given individual using high-dimensional genomic measurements. However, identifying predictive features remains a challenge when the sample size is small. Incorporating expert knowledge offers a promising approach to improve predictions, but collecting such knowledge is laborious if the number of candidate features is very large. Results: We introduce a probabilistic framework to incorporate expert feedback about the impact of genomic measurements on the outcome of interest and present a novel approach to collect the feedback efficiently, based on Bayesian experimental design. The new approach outperformed other recent alternatives in two medical applications: prediction of metabolic traits and prediction of sensitivity of cancer cells to different drugs, both using genomic features as predictors. Furthermore, the intelligent approach to collect feedback reduced the workload of the expert to approximately 11%, compared to a baseline approach. Availability and implementation: Source code implementing the introduced computational methods is freely available at https://github.com/AaltoPML/knowledge-elicitation-for-precision-medicine. Supplementary information: Supplementary data are available at Bioinformatics online. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | i395-i403 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Sundin, I, Peltola, T, Micallef, L, Afrabandpey, H, Soare, M, Majumder, M M, Daee, P, He, C, Serim, B, Havulinna, A, Heckman, C, Jacucci, G, Marttinen, P & Kaski, S 2018, ' Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge ', Bioinformatics, vol. 34, no. 13, pp. i395-i403 . https://doi.org/10.1093/bioinformatics/bty257 | en |
dc.identifier.doi | 10.1093/bioinformatics/bty257 | en_US |
dc.identifier.issn | 1367-4803 | |
dc.identifier.issn | 1460-2059 | |
dc.identifier.other | PURE UUID: e381d341-1e23-45f6-aff9-3b385039b21a | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/e381d341-1e23-45f6-aff9-3b385039b21a | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/26349102/bty257.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/32941 | |
dc.identifier.urn | URN:NBN:fi:aalto-201808014342 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | BIOINFORMATICS | en |
dc.relation.ispartofseries | Volume 34, issue 13 | en |
dc.rights | openAccess | en |
dc.title | Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |