Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSundin, Iirisen_US
dc.contributor.authorPeltola, Tomien_US
dc.contributor.authorMicallef, Luanaen_US
dc.contributor.authorAfrabandpey, Homayunen_US
dc.contributor.authorSoare, Martaen_US
dc.contributor.authorMajumder, Muntasir Mamunen_US
dc.contributor.authorDaee, Pedramen_US
dc.contributor.authorHe, Chenen_US
dc.contributor.authorSerim, Barisen_US
dc.contributor.authorHavulinna, Akien_US
dc.contributor.authorHeckman, Carolineen_US
dc.contributor.authorJacucci, Giulioen_US
dc.contributor.authorMarttinen, Pekkaen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.organizationInstitute for Molecular Medicine Finlanden_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2018-08-01T13:35:44Z
dc.date.available2018-08-01T13:35:44Z
dc.date.issued2018-06-27en_US
dc.description.abstractMotivation Precision medicine requires the ability to predict the efficacies of different treatments for a given individual using high-dimensional genomic measurements. However, identifying predictive features remains a challenge when the sample size is small. Incorporating expert knowledge offers a promising approach to improve predictions, but collecting such knowledge is laborious if the number of candidate features is very large. Results: We introduce a probabilistic framework to incorporate expert feedback about the impact of genomic measurements on the outcome of interest and present a novel approach to collect the feedback efficiently, based on Bayesian experimental design. The new approach outperformed other recent alternatives in two medical applications: prediction of metabolic traits and prediction of sensitivity of cancer cells to different drugs, both using genomic features as predictors. Furthermore, the intelligent approach to collect feedback reduced the workload of the expert to approximately 11%, compared to a baseline approach. Availability and implementation: Source code implementing the introduced computational methods is freely available at https://github.com/AaltoPML/knowledge-elicitation-for-precision-medicine. Supplementary information: Supplementary data are available at Bioinformatics online.en
dc.description.versionPeer revieweden
dc.format.extenti395-i403
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSundin, I, Peltola, T, Micallef, L, Afrabandpey, H, Soare, M, Majumder, M M, Daee, P, He, C, Serim, B, Havulinna, A, Heckman, C, Jacucci, G, Marttinen, P & Kaski, S 2018, ' Improving genomics-based predictions for precision medicine through active elicitation of expert knowledge ', Bioinformatics, vol. 34, no. 13, pp. i395-i403 . https://doi.org/10.1093/bioinformatics/bty257en
dc.identifier.doi10.1093/bioinformatics/bty257en_US
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.otherPURE UUID: e381d341-1e23-45f6-aff9-3b385039b21aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e381d341-1e23-45f6-aff9-3b385039b21aen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/26349102/bty257.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/32941
dc.identifier.urnURN:NBN:fi:aalto-201808014342
dc.language.isoenen
dc.relation.ispartofseriesBIOINFORMATICSen
dc.relation.ispartofseriesVolume 34, issue 13en
dc.rightsopenAccessen
dc.titleImproving genomics-based predictions for precision medicine through active elicitation of expert knowledgeen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files