High-Quality Magnetically Hard ε-Fe2O3 Thin Films through Atomic Layer Deposition for Room-Temperature Applications

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJussila, Topiasen_US
dc.contributor.authorPhilip, Anishen_US
dc.contributor.authorLindén, Johanen_US
dc.contributor.authorKarppinen, Maariten_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.groupauthorInorganic Materials Chemistryen
dc.contributor.organizationÅbo Akademi Universityen_US
dc.date.accessioned2023-01-25T07:34:49Z
dc.date.available2023-01-25T07:34:49Z
dc.date.issued2023-02en_US
dc.descriptionPublisher Copyright: © 2022 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH.
dc.description.abstractThe critical-element-free ε-Fe2O3 ferrimagnet exhibits giant magnetic coercivity even at room temperature. It is thus highly attractive material for advanced applications in fields such as spintronics, high-density data storage, and wireless communication. However, a serious obstacle to overcome is the notoriously challenging synthesis of ε-Fe2O3 due to its metastable nature. Atomic layer deposition (ALD) is the state-of-the-art thin-film technology in microelectronics. Herein, it is demonstrated that it has also true potential for the fabrication of amazingly stable in situ crystalline and high-performance ε-Fe2O3 thin films from simple (FeCl3 and H2O) chemical precursors at a moderately low deposition temperature (280 °C). Standard X-ray diffraction and Fourier transfer infrared spectroscopy characterization indicates that the films are of high level of phase purity. Most importantly, precise temperature-dependent 57Fe Mössbauer spectroscopy measurements verify that the hematite (α-Fe2O3) trace in the films is below 2.5%, and reveal the characteristic low- and high-temperature transitions at 208–228 K and ≈480 K, respectively, while magnetization measurements confirm the symmetric hysteresis loops expected for essentially phase-pure ε-Fe2O3 films. Excitingly, the highly c-axis oriented film growth, the overall film quality, and the unique magnetic properties remain the same, independently of the substrate material used.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJussila, T, Philip, A, Lindén, J & Karppinen, M 2023, ' High-Quality Magnetically Hard ε-Fe 2 O 3 Thin Films through Atomic Layer Deposition for Room-Temperature Applications ', Advanced Engineering Materials, vol. 25, no. 2, 2201262 . https://doi.org/10.1002/adem.202201262en
dc.identifier.doi10.1002/adem.202201262en_US
dc.identifier.issn1438-1656
dc.identifier.issn1527-2648
dc.identifier.otherPURE UUID: 79e175fb-2c53-46c5-ac39-ddb22a3ec2dden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/79e175fb-2c53-46c5-ac39-ddb22a3ec2dden_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85142117785&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/98487560/CHEM_Jussila_et_al_High_Quality_Magnetically_2023_Advanced_Engineering_Materials.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119159
dc.identifier.urnURN:NBN:fi:aalto-202301251513
dc.language.isoenen
dc.publisherWiley
dc.relation.ispartofseriesAdvanced Engineering Materialsen
dc.relation.ispartofseriesVolume 25, issue 2en
dc.rightsopenAccessen
dc.subject.keywordALDen_US
dc.subject.keywordatomic layer depositionen_US
dc.subject.keywordmagnetic thin filmsen_US
dc.subject.keywordMössbauer spectroscopyen_US
dc.subject.keywordthin filmsen_US
dc.subject.keywordε-FeOen_US
dc.titleHigh-Quality Magnetically Hard ε-Fe2O3 Thin Films through Atomic Layer Deposition for Room-Temperature Applicationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files