Small-scale and large-scale dynamos in global convection simulations of solar-like stars
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2025-04-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
20
Series
Astronomy and Astrophysics, Volume 696, pp. 1-20
Abstract
Context. It has recently been shown numerically that a small-scale dynamo (SSD) instability might be possible in solar-like low magnetic Prandtl number plasmas. It was proposed that the presence of SSD might have a significant effect on the dynamics of the large-scale dynamo (LSD) in stellar convection zones. The simultaneous study of these two dynamos, SSD and LSD, in a global magnetoconvection model requires high-resolution simulations and large amounts of computational resources. Aims. Starting from a well-studied global convective dynamo model that produces cyclic magnetic fields, we systematically increased the resolution and lowered the diffusivities to enter the regime of Reynolds numbers that enable the excitation of SSD in addition to the LSD. We studied the change in the properties of convection, generated differential rotation profiles, and LSD solutions due to the presence of SSD. Methods. We performed semiglobal convective dynamo simulations in a spherical wedge with the Pencil Code. The resolutions of the models were increased in four steps by a total factor of 16 to achieve maximum fluid and magnetic Reynolds numbers of above 500. Results. We found that differential rotation is strongly quenched by the presence of the LSD and SSD. Even though the small-scale magnetic field only mildly decreases with increasing Reynolds number, the large-scale field strength decreases significantly. We found no significant quenching of the convective flows by the SSD, as recently claimed by other authors; in contrast, the convective flows first grow and then saturate for increasing Reynolds numbers. Furthermore, the angular momentum transport is highly affected by the presence of small-scale magnetic fields, which are mostly generated by tangling of the LSD. These fields not only change the Reynolds stresses, but also generate dynamically important Maxwell stresses. The LSD evolution in terms of its pattern and field distribution is rather independent of the increase in the fluid and magnetic Reynolds numbers. Conclusions. At high fluid and magnetic Reynolds numbers, an SSD can be excited in addition to the LSD, and both strongly affect the angular momentum transport. Hence, it is important to study both dynamos and their interplay together to fully understand the dynamics of the Sun and other stars.Description
| openaire: EC/H2020/818665/EU//UniSDyn | openaire: EC/HE/101101005/EU//SYCOS
Keywords
Dynamo, Magnetic fields, Magnetohydrodynamics (MHD), Stars: activity, Sun: magnetic fields, Turbulence
Other note
Citation
Warnecke, J, Korpi-Lagg, M J, Rheinhardt, M, Viviani, M & Prabhu, A 2025, ' Small-scale and large-scale dynamos in global convection simulations of solar-like stars ', Astronomy and Astrophysics, vol. 696, A93, pp. 1-20 . https://doi.org/10.1051/0004-6361/202451085