Decarbonizing shipping in ice by intelligent icebreaking assistance: A case study of the Finnish-Swedish winter navigation system
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2023-10-15
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
Series
Ocean Engineering, Volume 286, part 2
Abstract
Ice often complicates shipping in extremely cold regions, leading to energy-consuming, expensive transportation. Ship performance can be significantly improved with icebreaking assistance that uses specialized ships called icebreakers to create navigable pathways in ice fields. Icebreakers are a critical and expensive resource with high energy consumption that must be judiciously utilized for efficient traffic flow. Optimizing icebreaker usage requires careful consideration of multiple factors related to weather, ships, and regulations. The existing decision support tools for icebreaker management primarily aim to minimize the total waiting time of ships, which may result in allocation of excess icebreakers. The paper presents a novel simulation-based approach for decarbonizing shipping in ice by intelligent icebreaking assistance. The proposed approach optimizes icebreaker assistance for both eco- and cost efficiency, allowing for more sustainable icebreaking policies. A case study representing a simplified configuration of the Finnish-Swedish Winter Navigation System demonstrates this approach to come up with alternate operating strategies that can significantly improve the emission and/or cost (e.g., up to 7 percent less greenhouse gas emission or up to 14.2% lower costs). Results show that the proposed approach is promising, for providing recommendations on environmental and economic policies to decarbonize the Finnish-Swedish icebreaking assistance.Description
Keywords
Decarbonization, Sustainability, Greenhouse gas, Icebreakers Maritime transport Discrete-event simulation, baltic sea
Other note
Citation
Kondratenko, A, Kulkarni, K, Li, F, Musharraf, M, Hirdaris, S & Kujala, P 2023, ' Decarbonizing shipping in ice by intelligent icebreaking assistance: A case study of the Finnish-Swedish winter navigation system ', Ocean Engineering, vol. 286, part 2, 115652 . https://doi.org/10.1016/j.oceaneng.2023.115652