Predictive modeling of ships’ power consumption with Bayesian hierarchical methods

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

Perustieteiden korkeakoulu | Master's thesis

Date

2019-10-22

Department

Major/Subject

Applied Mathematics

Mcode

SCI3053

Degree programme

Master’s Programme in Mathematics and Operations Research

Language

en

Pages

78+16

Series

Description

Supervisor

Hyvönen, Nuutti

Thesis advisor

Solonen, Antti
Staboulis, Stratos

Keywords

Bayesian probability, Hamiltonian Monte Carlo methods, hierarchical models, ships’ total power models, service power

Other note

Citation