Advancements in form-stabilized phase change materials: stabilization mechanisms, multifunctionalities, and applications - A Comprehensive Review
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A2 Katsausartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-04
Major/Subject
Mcode
Degree programme
Language
en
Pages
21
Series
Materials Today Energy, Volume 41
Abstract
Phase change materials (PCMs) possess remarkable properties that make them highly attractive for thermal energy storage and regulation purposes. Their ability to store energy in the form of latent heat while maintaining a nearly constant temperature has led to growing interest in their practical applications. However, a significant challenge in utilizing PCMs lies in their susceptibility to leakage and fluidity in the melt state. Therefore, it becomes imperative to develop effective methods to create leakage-free form-stabilized PCMs, enabling their widespread use in various industries. In this review, we comprehensively evaluate the advantages and disadvantages of different stabilization methods by summarizing the key research advancements in this field. We delve into the effectiveness of the various techniques in mitigating leakage issues and enhancing the overall performance of form-stabilized PCMs. Furthermore, we present the multifunctionalities that form-stabilized PCMs can offer, including self-healing, self-cleaning, fire-retardancy, and electrical and thermal conductivities. Moreover, we explore the diverse application areas of form-stabilized PCMs, including solar energy storage, buildings, textiles, biomedical, and electronics. These explorations promise advancements in energy efficiency, thermal comfort, and sustainable design. This review aims to shed light on the potential of form-stabilized PCMs in revolutionizing various sectors and contributing to a greener and more energy-conscious future.Description
Keywords
form-stabilized PCMs, latent heat, phase change materials, thermal energy storage, Latent heat, Form-stabilized PCMs, Thermal energy storage, PCMs
Other note
Citation
Yazdani McCord, R & Baniasadi, H 2024, ' Advancements in form-stabilized phase change materials: stabilization mechanisms, multifunctionalities, and applications - A Comprehensive Review ', Materials Today Energy, vol. 41, 101532 . https://doi.org/10.1016/j.mtener.2024.101532