Capturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environments
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sigg, Stephan | en_US |
dc.contributor.author | Palipana, Sameera | en_US |
dc.contributor.author | Savazzi, Stefano | en_US |
dc.contributor.author | Kianoush, Sanaz | en_US |
dc.contributor.department | Department of Communications and Networking | en |
dc.contributor.editor | Di Francescomarino, Chiara | en_US |
dc.contributor.editor | Dijkman, Remco | en_US |
dc.contributor.editor | Zdun, Uwe | en_US |
dc.contributor.groupauthor | Ambient Intelligence | en |
dc.contributor.organization | Aalto University | en_US |
dc.date.accessioned | 2020-02-12T10:46:56Z | |
dc.date.available | 2020-02-12T10:46:56Z | |
dc.date.issued | 2019-01-01 | en_US |
dc.description.abstract | In manufacturing environments, human workers interact with increasingly autonomous machinery. To ensure workspace safety and production efficiency during human-robot cooperation, continuous and accurate tracking and perception of workers’ activities is required. The RadioSense project intends to move forward the state-of-the-art in advanced sensing and perception for next generation manufacturing workspace. In this paper, we describe our ongoing efforts towards multi-subject recognition cases with multiple persons conducting several simultaneous activities. Perturbations induced by moving bodies/objects on the electromagnetic wavefield can be processed for environmental perception by leveraging next generation (5G) New Radio (NR) technologies, including MIMO systems, high performance edge-cloud computing and novel (or custom designed) deep learning tools. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 6 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Sigg, S, Palipana, S, Savazzi, S & Kianoush, S 2019, Capturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environments. in C Di Francescomarino, R Dijkman & U Zdun (eds), Business Process Management Workshops - BPM 2019 International Workshops, Revised Selected Papers. Lecture Notes in Business Information Processing, vol. 362 LNBIP, Springer, pp. 430-435, International Conference on Business Process Management, Vienna, Austria, 01/09/2019. https://doi.org/10.1007/978-3-030-37453-2_35 | en |
dc.identifier.doi | 10.1007/978-3-030-37453-2_35 | en_US |
dc.identifier.isbn | 9783030374525 | |
dc.identifier.issn | 1865-1348 | |
dc.identifier.issn | 1865-1356 | |
dc.identifier.other | PURE UUID: 1fed4511-9fcd-452c-8318-31a2309b91e0 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/1fed4511-9fcd-452c-8318-31a2309b91e0 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85078528120&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/40830388/ELEC_Sigg_Capturing_human_machine_LNBIP.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/43049 | |
dc.identifier.urn | URN:NBN:fi:aalto-202002122118 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Conference on Business Process Management | en |
dc.relation.ispartofseries | Business Process Management Workshops - BPM 2019 International Workshops, Revised Selected Papers | en |
dc.relation.ispartofseries | pp. 430-435 | en |
dc.relation.ispartofseries | Lecture Notes in Business Information Processing ; Volume 362 LNBIP | en |
dc.rights | openAccess | en |
dc.subject.keyword | 5G | en_US |
dc.subject.keyword | Collaborative Robotics | en_US |
dc.subject.keyword | Industry 4.0 | en_US |
dc.subject.keyword | Radio sensing | en_US |
dc.title | Capturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environments | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |