Capturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environments

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSigg, Stephanen_US
dc.contributor.authorPalipana, Sameeraen_US
dc.contributor.authorSavazzi, Stefanoen_US
dc.contributor.authorKianoush, Sanazen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.editorDi Francescomarino, Chiaraen_US
dc.contributor.editorDijkman, Remcoen_US
dc.contributor.editorZdun, Uween_US
dc.contributor.groupauthorAmbient Intelligenceen
dc.contributor.organizationAalto Universityen_US
dc.date.accessioned2020-02-12T10:46:56Z
dc.date.available2020-02-12T10:46:56Z
dc.date.issued2019-01-01en_US
dc.description.abstractIn manufacturing environments, human workers interact with increasingly autonomous machinery. To ensure workspace safety and production efficiency during human-robot cooperation, continuous and accurate tracking and perception of workers’ activities is required. The RadioSense project intends to move forward the state-of-the-art in advanced sensing and perception for next generation manufacturing workspace. In this paper, we describe our ongoing efforts towards multi-subject recognition cases with multiple persons conducting several simultaneous activities. Perturbations induced by moving bodies/objects on the electromagnetic wavefield can be processed for environmental perception by leveraging next generation (5G) New Radio (NR) technologies, including MIMO systems, high performance edge-cloud computing and novel (or custom designed) deep learning tools.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSigg, S, Palipana, S, Savazzi, S & Kianoush, S 2019, Capturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environments. in C Di Francescomarino, R Dijkman & U Zdun (eds), Business Process Management Workshops - BPM 2019 International Workshops, Revised Selected Papers. Lecture Notes in Business Information Processing, vol. 362 LNBIP, Springer, pp. 430-435, International Conference on Business Process Management, Vienna, Austria, 01/09/2019. https://doi.org/10.1007/978-3-030-37453-2_35en
dc.identifier.doi10.1007/978-3-030-37453-2_35en_US
dc.identifier.isbn9783030374525
dc.identifier.issn1865-1348
dc.identifier.issn1865-1356
dc.identifier.otherPURE UUID: 1fed4511-9fcd-452c-8318-31a2309b91e0en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1fed4511-9fcd-452c-8318-31a2309b91e0en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85078528120&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40830388/ELEC_Sigg_Capturing_human_machine_LNBIP.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43049
dc.identifier.urnURN:NBN:fi:aalto-202002122118
dc.language.isoenen
dc.relation.ispartofInternational Conference on Business Process Managementen
dc.relation.ispartofseriesBusiness Process Management Workshops - BPM 2019 International Workshops, Revised Selected Papersen
dc.relation.ispartofseriespp. 430-435en
dc.relation.ispartofseriesLecture Notes in Business Information Processing ; Volume 362 LNBIPen
dc.rightsopenAccessen
dc.subject.keyword5Gen_US
dc.subject.keywordCollaborative Roboticsen_US
dc.subject.keywordIndustry 4.0en_US
dc.subject.keywordRadio sensingen_US
dc.titleCapturing Human-Machine Interaction Events from Radio Sensors in Industry 4.0 Environmentsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files