RP1M: A Large-Scale Motion Dataset for Piano Playing with Bimanual Dexterous Robot Hands

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhao, Yi
dc.contributor.authorChen, Le
dc.contributor.authorSchneider, Jan
dc.contributor.authorGao, Quankai
dc.contributor.authorKannala, Juho
dc.contributor.authorSchölkopf, Bernhard
dc.contributor.authorPajarinen, Joni
dc.contributor.authorBüchler, Dieter
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorRobot Learningen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorComputer Science - Visual Computing (VisualComputing) - Research areaen
dc.contributor.groupauthorProfessorship Kannala Juhoen
dc.contributor.organizationDepartment of Electrical Engineering and Automation
dc.contributor.organizationMax Planck Institute for Intelligent Systems
dc.contributor.organizationUniversity of Southern California
dc.date.accessioned2025-03-26T07:50:45Z
dc.date.available2025-03-26T07:50:45Z
dc.date.issued2025
dc.descriptionPublisher Copyright: © 2024 Proceedings of Machine Learning Research.
dc.description.abstractIt has been a long-standing research goal to endow robot hands with human-level dexterity. Bimanual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning-based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bimanual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdf
dc.identifier.citationZhao, Y, Chen, L, Schneider, J, Gao, Q, Kannala, J, Schölkopf, B, Pajarinen, J & Büchler, D 2025, 'RP1M: A Large-Scale Motion Dataset for Piano Playing with Bimanual Dexterous Robot Hands', Proceedings of Machine Learning Research, vol. 270, pp. 5184-5203. < https://proceedings.mlr.press/v270/zhao25d.html >en
dc.identifier.issn2640-3498
dc.identifier.otherPURE UUID: ead8131a-d81d-4cd9-a7df-4c061cea460f
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ead8131a-d81d-4cd9-a7df-4c061cea460f
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=86000783562&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: https://proceedings.mlr.press/v270/zhao25d.html
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/177476419/RP1M.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/134810
dc.identifier.urnURN:NBN:fi:aalto-202503263052
dc.language.isoenen
dc.publisherJMLR
dc.relation.ispartofseriesProceedings of Machine Learning Researchen
dc.relation.ispartofseriesVolume 270, pp. 5184-5203en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordBimanual dexterous robot hands
dc.subject.keyworddataset for robot piano playing
dc.subject.keywordimitation learning
dc.subject.keywordrobot learning at scale
dc.titleRP1M: A Large-Scale Motion Dataset for Piano Playing with Bimanual Dexterous Robot Handsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RP1M.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format