Recent advances for CO2 mineralization in biochar-amended cementitious composites

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorRoy, Soumya
dc.contributor.authorNellattukuzhi Sreenivasan, Harisankar
dc.contributor.authorSarmah, Ajit K.
dc.contributor.authorBaniasadi, Hossein
dc.contributor.authorBordoloi, Sanandam
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.departmentDepartment of Chemical and Metallurgical Engineeringen
dc.contributor.groupauthorMineral Based Materials and Mechanicsen
dc.contributor.groupauthorStructures – Structural Engineering, Mechanics and Computationen
dc.contributor.groupauthorPolymer Synthesis Technologyen
dc.contributor.organizationMineral Based Materials and Mechanics
dc.contributor.organizationUniversity of Auckland
dc.date.accessioned2025-03-12T07:06:24Z
dc.date.available2025-03-12T07:06:24Z
dc.date.issued2025-04
dc.description.abstractBiochar, a carbonaceous material derived from organic waste, has recently been explored to mitigate the negative effects of accelerated carbon-di-oxide (CO2) curing (ACC) on concrete properties. This review categorizes the literature on biochar-amended cementitious composites and examines the key mechanisms governing CO2 mineralization. The influence of CO2 phases (gaseous and liquid) on mineralization during curing is discussed, focusing on how altering CO2 pressure and temperature can enhance the process. We explore the role of biochar's surface functional groups, aromaticity, porosity, and honeycomb structures in both carbonation and hydration. Additionally, the properties of the cementitious matrix—such as saturation degree, porosity, and ideal amorphous phases—are shown to improve carbonation. Despite these advancements, several gaps remain before biochar-amended composites can be adopted as conventional construction materials. These include the development of homogeneous biochar, standardization of ACC conditions, and the assessment of end-of-life leaching. The review highlights that strength gains of up to 71 % and CO2 uptake levels of up to 13 % are achievable in biochar-amended cementitious composites. Furthermore, the knowledge from other hydrocarbon-based materials in the petroleum industry is discussed to better understand the complex interactions of gas-air-solid flow during ACC.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdf
dc.identifier.citationRoy, S, Nellattukuzhi Sreenivasan, H, Sarmah, A K, Baniasadi, H & Bordoloi, S 2025, 'Recent advances for CO2 mineralization in biochar-amended cementitious composites', Resources, Conservation and Recycling, vol. 215, 108141. https://doi.org/10.1016/j.resconrec.2025.108141en
dc.identifier.doi10.1016/j.resconrec.2025.108141
dc.identifier.issn0921-3449
dc.identifier.issn1879-0658
dc.identifier.otherPURE UUID: 2b6a991d-bb86-461c-8ee5-620eab741bcf
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2b6a991d-bb86-461c-8ee5-620eab741bcf
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85216238640&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/174743888/Recent_advances_for_CO2_mineralization_in_biochar-amended.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/134498
dc.identifier.urnURN:NBN:fi:aalto-202503122750
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesResources, Conservation and Recyclingen
dc.relation.ispartofseriesVolume 215en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordCO2 mineralization
dc.subject.keywordaccelerated CO2 curing
dc.subject.keywordbiochar
dc.subject.keywordlow carbon cementitious composite
dc.subject.keywordCO mineralization
dc.subject.keywordBiochar
dc.subject.keywordAccelerated co2 curing
dc.subject.keywordLow carbon cementitious composite
dc.titleRecent advances for CO2 mineralization in biochar-amended cementitious compositesen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Recent_advances_for_CO2_mineralization_in_biochar-amended.pdf
Size:
12.31 MB
Format:
Adobe Portable Document Format