Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-05-15

Major/Subject

Mcode

Degree programme

Language

en

Pages

12

Series

Applied Energy, Volume 266

Abstract

Renewable energy usage would benefit from efficient and high-capacity long-term heat storage material. However, these types of material solutions still lack reliable and durable operation on bulk level. Previously, we showed that cold-crystallizing material (CCM), which consists of erythritol in cross-linked polymer matrix, stored heat for a long-term period in a milligram scale by supercooling stably and preventing undesired crystallization during storage. Crystallization of CCM can be triggered efficiently by re-heating the material (i.e. cold-crystallization). Supercooling and cold-crystallization are stochastic phenomena which manifest in a way that the properties in bulk scale often deviate from the microscale. In this work, we scale up CCM to a bulk size of 160 g, and analyze its supercooling and crystallization characteristics for long-term heat storage. In order to identify the impact of the scale-up on the tested compositions and to discover optimal storage conditions, CCM samples are maintained in storage mode at constant temperature between 0 and 10 °C and up to 97 days. To this end, the thermal chamber measurement procedure estimates the heat release of CCM samples based on the measured temperature data and the one-dimensional transient heat conduction model. Results indicate that the heat release in cold-crystallization is over 70% of the melting heat. This heat can be stored without reduction for at least 97 days, demonstrating the reliable performance of long-term heat storage. Analysing the thermal properties of CCM compositions indicates a maximum volumetric storage capacity of 250 MJ/m3 and excellent properties for further heat storage applications.

Description

Keywords

Cold-crystallization, Erythritol, Long-term thermal energy storage, Phase change material, Supercooling

Other note

Citation

Turunen, K, Yazdani, M R, Puupponen, S, Santasalo-Aarnio, A & Seppälä, A 2020, ' Cold-crystallizing erythritol-polyelectrolyte : Scaling up reliable long-term heat storage material ', Applied Energy, vol. 266, 114890 . https://doi.org/10.1016/j.apenergy.2020.114890