Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-05-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Applied Energy, Volume 266
Abstract
Renewable energy usage would benefit from efficient and high-capacity long-term heat storage material. However, these types of material solutions still lack reliable and durable operation on bulk level. Previously, we showed that cold-crystallizing material (CCM), which consists of erythritol in cross-linked polymer matrix, stored heat for a long-term period in a milligram scale by supercooling stably and preventing undesired crystallization during storage. Crystallization of CCM can be triggered efficiently by re-heating the material (i.e. cold-crystallization). Supercooling and cold-crystallization are stochastic phenomena which manifest in a way that the properties in bulk scale often deviate from the microscale. In this work, we scale up CCM to a bulk size of 160 g, and analyze its supercooling and crystallization characteristics for long-term heat storage. In order to identify the impact of the scale-up on the tested compositions and to discover optimal storage conditions, CCM samples are maintained in storage mode at constant temperature between 0 and 10 °C and up to 97 days. To this end, the thermal chamber measurement procedure estimates the heat release of CCM samples based on the measured temperature data and the one-dimensional transient heat conduction model. Results indicate that the heat release in cold-crystallization is over 70% of the melting heat. This heat can be stored without reduction for at least 97 days, demonstrating the reliable performance of long-term heat storage. Analysing the thermal properties of CCM compositions indicates a maximum volumetric storage capacity of 250 MJ/m3 and excellent properties for further heat storage applications.Description
Keywords
Cold-crystallization, Erythritol, Long-term thermal energy storage, Phase change material, Supercooling
Other note
Citation
Turunen, K, Yazdani, M R, Puupponen, S, Santasalo-Aarnio, A & Seppälä, A 2020, ' Cold-crystallizing erythritol-polyelectrolyte : Scaling up reliable long-term heat storage material ', Applied Energy, vol. 266, 114890 . https://doi.org/10.1016/j.apenergy.2020.114890