Nonstandard Errors

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2024-06

Major/Subject

Mcode

Degree programme

Language

en

Pages

52

Series

Journal of Finance, Volume 79, issue 3, pp. 2339-2390

Abstract

In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty—nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.

Description

NOA:343 Publisher Copyright: © 2024 The Authors. The Journal of Finance published by Wiley Periodicals LLC on behalf of American Finance Association.

Keywords

Other note

Citation

Menkveld, A J, Dreber, A, Holzmeister, F, Huber, J, Johannesson, M, Kirchler, M, Neusüß, S, Razen, M, Weitzel, U, Abad-Díaz, D, Abudy, M, Adrian, T, Ait-Sahalia, Y, Akmansoy, O, Alcock, J T, Alexeev, V, Aloosh, A, Amato, L, Amaya, D, Angel, J J, Chen, J, Duevski, T, Jylhä, P, Kaustia, M, Li, Y, Lof, M, Rinne, K, Rintamäki, P, Tran, H, Yu, W & Zhang, X 2024, ' Nonstandard Errors ', Journal of Finance, vol. 79, no. 3, pp. 2339-2390 . https://doi.org/10.1111/jofi.13337