Photonic heat transport in three terminal superconducting circuit

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Degree programme
Nature Communications, Volume 13, issue 1
We report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. The central element of the device is a flux qubit made of a superconducting loop containing three Josephson junctions, which can be tuned by magnetic flux. It is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step towards realization of heat transistors, heat amplifiers, masers pumped by heat and other quantum heat transport devices.
| openaire: EC/H2020/742559/EU//SQH | openaire: EC/H2020/843706/EU//XmonMASER Funding Information: We acknowledge valuable discussions with J. Ankerhold and G. Kurizki. This work was supported by the Academy of Finland Centre of Excellence program (project 312057), by the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) programme (grant agreement 742559), and Marie Sklodowska-Curie grant agreement No 843706. We acknowledge the provision of facilities and technical support of the Low Temperature Laboratory at Aalto University and the Otaniemi research infrastructure for Micro and Nanotechnologies (OtaNano). We also thank VTT Technical Research Center for depositing the Nb used in this work.
Gubaydullin , A , Thomas , G , Golubev , D S , Lvov , D , Peltonen , J T & Pekola , J P 2022 , ' Photonic heat transport in three terminal superconducting circuit ' , Nature Communications , vol. 13 , no. 1 , 1552 , pp. 1-10 .