Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2016-03-16
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-7
Series
NEW JOURNAL OF PHYSICS, Volume 18, issue 3
Abstract
Strong coupling of magnetic domain walls onto straight ferroelastic boundaries of a ferroelectric layer enables full and reversible electric-field control of magnetic domain wall motion. In this paper, the dynamics of this new driving mechanism is analyzed using micromagnetic simulations. We show that transverse domain walls with a near-180° spin structure are stabilized in magnetic nanowires and that electric fields can move these walls with high velocities. Above a critical velocity, which depends on material parameters, nanowire geometry and the direction of domain wall motion, the magnetic domain walls depin abruptly from the ferroelastic boundaries. Depinning evolves either smoothly or via the emission and annihilation of a vortex or antivortex core (Walker breakdown). In both cases, the magnetic domain wall slows down after depinning in an oscillatory fashion and eventually comes to a halt. The simulations provide design rules for hybrid ferromagnetic-ferroelectric domain-wall-based devices and indicatethat material disorder and structural imperfections only influence Walker-breakdown-like depinning at high domain wall velocities.
Description
| openaire: EC/H2020/665215/EU//EMOTION | openaire: EC/FP7/307502/EU//E-CONTROL
Keywords
electric field, ferroelectric-ferromagnetic heterostructures, magnetic domain wall motion, magnetic domain wall pinning, nanowires
Other note
Citation
Van De Wiele , B , Leliaert , J , Franke , K J A & Van Dijken , S 2016 , ' Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains ' , New Journal of Physics , vol. 18 , no. 3 , 033027 , pp. 1-7 . https://doi.org/10.1088/1367-2630/18/3/033027