In Situ Bioprocessing of Bacterial Cellulose with Graphene: Percolation Network Formation, Kinetic Analysis with Physicochemical and Structural Properties Assessment

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDhar, Prodyuten_US
dc.contributor.authorEtula, Jarkkoen_US
dc.contributor.authorBankar, Sandip Balasaheben_US
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorPhysical Characteristics of Surfaces and Interfacesen
dc.contributor.groupauthorBioprocess engineeringen
dc.date.accessioned2019-09-20T11:14:35Z
dc.date.available2019-09-20T11:14:35Z
dc.date.issued2019-01-01en_US
dc.description.abstractThe understanding of microbial growth dynamics during in situ fermentation and production of bacterial cellulose (BC) with impressive properties mimicking artificial nacre, suitable for commodity applications remains fundamentally challenging. Fabrication of BC/graphene films through a single step in situ fermentation with improved properties provides a sustainable replacement to the conventional chemical-based modification using toxic compounds. This work reports the effect of reduced graphene oxide (RGO) on in situ fermentation kinetics and demonstrates the formation of percolated-network in BC/RGO nanostructures. The evaluation of kinetic parameters shows that the specific growth rate reaches optimal values at 3 wt % RGO loadings, with mixed growth associated BC production behavior. The two-dimensional graphene sheets uniformly dispersed into a three-dimensional matrix of BC nanofibers via hydrogen-bonded interactions along with in situ reductions of RGO sheets, as confirmed from spectroscopic studies. This study also demonstrates the presence of percolated network-like structures between BC fibers and RGO platelets, which resulted in the formation of nanostructures with exceptional mechanical robustness and electrical conductivity. The physicochemical and structural properties of fabricated BC/RGO films were found to significantly depend upon the RGO compositions as well as fermentation conditions. We envision that the proposed ecofriendly and scalable technology for the formation of BC/RGO films with excellent inherent properties and performance will attract great interest for its prospective applications in flexible electronics.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDhar, P, Etula, J & Bankar, S B 2019, ' In Situ Bioprocessing of Bacterial Cellulose with Graphene : Percolation Network Formation, Kinetic Analysis with Physicochemical and Structural Properties Assessment ', ACS Applied Bio Materials . https://doi.org/10.1021/acsabm.9b00581en
dc.identifier.doi10.1021/acsabm.9b00581en_US
dc.identifier.issn2574-0970
dc.identifier.otherPURE UUID: b996e24e-ef55-4e7f-89a7-85094b3bfbaeen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b996e24e-ef55-4e7f-89a7-85094b3bfbaeen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85071689382&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/36962726/CHEM_Dhar_et_al_In_Situ_Bioprocessing_2019_acsAplMat.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/40339
dc.identifier.urnURN:NBN:fi:aalto-201909205365
dc.language.isoenen
dc.publisherAMERICAN CHEMICAL SOCIETY
dc.relation.ispartofseriesACS Applied Bio Materialsen
dc.rightsopenAccessen
dc.subject.keywordbacterial celluloseen_US
dc.subject.keywordelectrical conductivityen_US
dc.subject.keywordfermentation kineticsen_US
dc.subject.keywordin situ fermentationen_US
dc.subject.keywordstructural propertiesen_US
dc.titleIn Situ Bioprocessing of Bacterial Cellulose with Graphene: Percolation Network Formation, Kinetic Analysis with Physicochemical and Structural Properties Assessmenten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files