Ground state optimization and hysteretic demagnetization: the random-field Ising model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAlava, M.J.
dc.contributor.authorBasso, V.
dc.contributor.authorColaiori, F.
dc.contributor.authorDante, L.
dc.contributor.authorDurin, G.
dc.contributor.authorMagni, A.
dc.contributor.authorZapperi, S.
dc.contributor.departmentDepartment of Applied Physicsen
dc.date.accessioned2018-05-22T14:31:05Z
dc.date.available2018-05-22T14:31:05Z
dc.date.issued2005
dc.description.abstractWe compare the ground state of the random-field Ising model with Gaussian distributed random fields, with its nonequilibrium hysteretic counterpart, the demagnetized state. This is a low-energy state obtained by a sequence of slow magnetic-field oscillations with decreasing amplitude. The main concern is how optimized the demagnetized state is with respect to the best-possible ground state. Exact results for the energy in d=1 show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better characterize the difference between the ground state and the demagnetized state. For d⩾3, the random-field Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state. The locations of the critical points R(DS)c and R(GS)c differ for the demagnetized state and ground state. We argue based on the numerics that in d=3 the scaling at the transition is the same in both states. This claim is corroborated by the exact solution of the model on the Bethe lattice, where the critical points are also different.en
dc.description.versionPeer revieweden
dc.format.extent1-12
dc.format.mimetypeapplication/pdf
dc.identifier.citationAlava , M J , Basso , V , Colaiori , F , Dante , L , Durin , G , Magni , A & Zapperi , S 2005 , ' Ground state optimization and hysteretic demagnetization: the random-field Ising model ' , Physical Review B , vol. 71 , no. 6 , 064423 , pp. 1-12 . https://doi.org/10.1103/PhysRevB.71.064423en
dc.identifier.doi10.1103/PhysRevB.71.064423
dc.identifier.issn1550-235X
dc.identifier.otherPURE UUID: 21ea888e-45d8-4b98-8b2f-2efaa4c45188
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/21ea888e-45d8-4b98-8b2f-2efaa4c45188
dc.identifier.otherPURE LINK: http://xxx.lanl.gov/abs/cond-mat/0407297
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/14525993/PhysRevB.71.064423.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/30801
dc.identifier.urnURN:NBN:fi:aalto-201805222241
dc.language.isoenen
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 71, issue 6en
dc.rightsopenAccessen
dc.subject.keywordhysteresis
dc.subject.keywordoptimization
dc.subject.keywordphase transition
dc.subject.keywordRFIM
dc.titleGround state optimization and hysteretic demagnetization: the random-field Ising modelen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files