Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: A new perspective

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTronarp, Filipen_US
dc.contributor.authorKersting, Hansen_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.authorHennig, Philippen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.contributor.organizationUniversity of Tübingenen_US
dc.contributor.organizationMax Planck Institute for Intelligent Systemsen_US
dc.date.accessioned2020-01-02T14:10:43Z
dc.date.available2020-01-02T14:10:43Z
dc.date.issued2019-09-18en_US
dc.description.abstractWe formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems in Gaussian process (GP) regression with non-linear measurement functions. This is achieved by defining the measurement sequence to consist of the observations of the difference between the derivative of the GP and the vector field evaluated at the GP---which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem can be reduced to a non-linear Bayesian filtering problem and all widely-used approximations to the Bayesian filtering and smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers that are formulated in terms of generating synthetic measurements of the gradient field come out as specific approximations. Based on the non-linear Bayesian filtering problem posed in this paper, we develop novel Gaussian solvers for which we establish favourable stability properties. Additionally, non-Gaussian approximations to the filtering problem are derived by the particle filter approach. The resulting solvers are compared with other probabilistic solvers in illustrative experiments.en
dc.description.versionPeer revieweden
dc.format.extent19
dc.format.extent1297-1315
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTronarp, F, Kersting, H, Särkkä, S & Hennig, P 2019, ' Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering : A new perspective ', STATISTICS AND COMPUTING, vol. 29, pp. 1297-1315 . https://doi.org/10.1007/s11222-019-09900-1en
dc.identifier.doi10.1007/s11222-019-09900-1en_US
dc.identifier.issn0960-3174
dc.identifier.otherPURE UUID: d9a488b4-0a4f-4a9f-9a34-dcae289862e7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d9a488b4-0a4f-4a9f-9a34-dcae289862e7en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/39723929/ELEC_Tronarp_etal_Probabilistic_Solutions_to_Ordinary_StatComp_29_2019_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42249
dc.identifier.urnURN:NBN:fi:aalto-202001021360
dc.language.isoenen
dc.publisherSPRINGER
dc.relation.ispartofseriesSTATISTICS AND COMPUTINGen
dc.relation.ispartofseriesVolume 29en
dc.rightsopenAccessen
dc.subject.keywordProbabilistic numericsen_US
dc.subject.keywordInitial value problemsen_US
dc.subject.keywordNon-linear Bayesian filteringen_US
dc.titleProbabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: A new perspectiveen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files