Geometry-independent superfluid weight in multiorbital lattices from the generalized random phase approximation

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2024-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

26

Series

PHYSICAL REVIEW RESEARCH, Volume 6, issue 1, pp. 1-26

Abstract

The superfluid weight of a generic lattice model with attractive Hubbard interaction is computed analytically in the isolated band limit within the generalized random phase approximation. Time-reversal symmetry, spin rotational symmetry, and the uniform pairing condition are assumed. It is found that the relation obtained in Huhtinen et al. [Phys. Rev. B 106, 014518 (2022)10.1103/PhysRevB.106.014518] between the superfluid weight in the flat band limit and the so-called minimal quantum metric is valid even at the level of the generalized random phase approximation. For an isolated, but not necessarily flat, band it is found that the correction to the superfluid weight obtained from the generalized random phase approximation Ds(1)=Ds,c(1)+Ds,g(1) is also the sum of a conventional contribution Ds,c(1) and a geometric contribution Ds,g(1), as in the case of the known mean-field result Ds(0)=Ds,c(0)+Ds,g(0), in which the geometric term Ds,g(0) is a weighted average of the quantum metric. The conventional contribution is geometry independent, that is, independent of the orbital positions, while it is possible to find a preferred, or natural, set of orbital positions such that Ds,g(1)=0. Useful analytic expressions are derived for both the natural orbital positions and the minimal quantum metric, including its extension to bands that are not necessarily flat. Finally, using some simple examples, it is argued that the natural orbital positions may lead to a more refined classification of the topological properties of the band structure.

Description

Publisher Copyright: © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Keywords

Other note

Citation

Tam, M & Peotta, S 2024, ' Geometry-independent superfluid weight in multiorbital lattices from the generalized random phase approximation ', PHYSICAL REVIEW RESEARCH, vol. 6, no. 1, 013256, pp. 1-26 . https://doi.org/10.1103/PhysRevResearch.6.013256