A novel method for calculating heat emitter and controller configuration setpoint variations with EN15316-2
No Thumbnail Available
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-09-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Journal of Building Engineering, Volume 31
Abstract
Estimating heat emission losses of heating systems is an important task of energy efficiency assessments in buildings. However, the present international standards do not specify how emission losses should be calculated or measured for different emitter and control system configurations. Aiming to fill this gap, here we propose a method for computing the temperature setpoint variations by addressing the heat distribution throughout a room with space heat emitters. This general and exact procedure enables the calculation of product category-specific setpoint variations for different types of heat emitters, accounting for the overall heat balance in the enclosure and including the cross-correlations of each component. Our method complements the procedure presented in the Standard EN15316-2, making it possible to compute emission losses as product-specific values of setpoint variations instead of tabulated values. As the main finding of the study, the calculation process is defined for a European Reference Room that allows an accurate and transparent evaluation of total setpoint variations. These are computed for specific products from measured vertical stratification and control parameters, by means of an annual IDA ICE simulation model of the reference enclosure. Applying the method to an annual energy performance simulation for an old and a new building in Strasbourg shows that emission losses are compensated by a total setpoint variation of respectively up to 2.00 °C and 1.20 °C, corresponding to an increase in total heating energy usage of up to 22% and 20%.Description
Keywords
Emission efficiency, European reference room, Heat emission, Operative temperature, Setpoint variation
Other note
Citation
Võsa, K V, Ferrantelli, A & Kurnitski, J 2020, ' A novel method for calculating heat emitter and controller configuration setpoint variations with EN15316-2 ', Journal of Building Engineering, vol. 31, 101387 . https://doi.org/10.1016/j.jobe.2020.101387