Predicer : abstract stochastic optimisation model framework for multi-market operation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPursiheimo, Esaen_US
dc.contributor.authorSundell, Dennisen_US
dc.contributor.authorKiviluoma, Juhaen_US
dc.contributor.authorHankimaa, Helmien_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorOperations Research and Systems Analysisen
dc.contributor.organizationVTT Technical Research Centre of Finlanden_US
dc.contributor.organizationDepartment of Mathematics and Systems Analysisen_US
dc.date.accessioned2024-12-17T16:14:41Z
dc.date.available2024-12-17T16:14:41Z
dc.date.issued2024-03en_US
dc.descriptionPublisher Copyright: © 2023, The Author(s).
dc.description.abstractAn open-source modelling framework Predicer, standing for Predictive Decider, for multi-market day-ahead market operation purposes is described in this paper. The Predicer model uses scenario-based stochastic optimisation to obtain decision variables and bid matrixes for energy and reserve markets by maximising the risk-adjusted expected value of the profit during the model time frame. The modelled energy system structure is abstract, that is, based on basic elements such as nodes representing different energy types and processes representing flows between nodes. The abstract model structure enables user to construct arbitrary energy systems and define links between assets, commodities, energy markets and reserve markets. Predicer model can include properties such as unit ramp rates, online units, dynamic energy storages, market realisation and market bidding requirements. The aggregation of unit-based energy and reserve opportunities into a virtual power plant allows the asset owner to make optimized portfolio-level bids for different market products. The model scenarios consist of user defined forecasts for market prices, renewable energy supply, energy demand and other system related time series. Predicer is implemented in Julia programming language and uses the JuMP optimisation package.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPursiheimo, E, Sundell, D, Kiviluoma, J & Hankimaa, H 2024, 'Predicer : abstract stochastic optimisation model framework for multi-market operation', Optimization and Engineering, vol. 25, no. 1, pp. 253–282. https://doi.org/10.1007/s11081-023-09824-wen
dc.identifier.doi10.1007/s11081-023-09824-wen_US
dc.identifier.issn1389-4420
dc.identifier.issn1573-2924
dc.identifier.otherPURE UUID: 0bb357b5-ae4c-43a3-9d32-0f99a40d3b9aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0bb357b5-ae4c-43a3-9d32-0f99a40d3b9aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85167396103&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/167023523/SCI_Pursiheimo_etal_Optimization_and_Engineering.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132365
dc.identifier.urnURN:NBN:fi:aalto-202412177842
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesOptimization and Engineeringen
dc.relation.ispartofseriesVolume 25, issue 1, pp. 253–282en
dc.rightsopenAccessen
dc.rightsCC BYen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordAbstract structureen_US
dc.subject.keywordEnergy marketsen_US
dc.subject.keywordEnergy system modelen_US
dc.subject.keywordMarket biddingen_US
dc.subject.keywordOpen sourceen_US
dc.subject.keywordStochastic optimisationen_US
dc.titlePredicer : abstract stochastic optimisation model framework for multi-market operationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files