How Resilient is Wood Xylan to Enzymatic Degradation in a Matrix with Kraft Lignin?
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-06-10
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Biomacromolecules, Volume 25, issue 6, pp. 3532-3541
Abstract
Despite the potential of lignocellulose in manufacturing value-added chemicals and biofuels, its efficient biotechnological conversion by enzymatic hydrolysis still poses major challenges. The complex interplay between xylan, cellulose, and lignin in fibrous materials makes it difficult to assess underlying physico- and biochemical mechanisms. Here, we reduce the complexity of the system by creating matrices of cellulose, xylan, and lignin, which consists of a cellulose base layer and xylan/lignin domains. We follow enzymatic degradation using an endoxylanase by high-speed atomic force microscopy and surface plasmon resonance spectroscopy to obtain morphological and kinetic data. Fastest reaction kinetics were observed at low lignin contents, which were related to the different swelling capacities of xylan. We demonstrate that the complex processes taking place at the interfaces of lignin and xylan in the presence of enzymes can be monitored in real time, providing a future platform for observing phenomena relevant to fiber-based systems.Description
Publisher Copyright: © 2024 The Authors. Published by American Chemical Society.
Keywords
Other note
Citation
Schaubeder, J B, Ganser, C, Nypelö, T, Uchihashi, T & Spirk, S 2024, ' How Resilient is Wood Xylan to Enzymatic Degradation in a Matrix with Kraft Lignin? ', Biomacromolecules, vol. 25, no. 6, pp. 3532-3541 . https://doi.org/10.1021/acs.biomac.4c00185