Multitasking in Driving as Optimal Adaptation Under Uncertainty
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-12
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
HUMAN FACTORS
Abstract
Objective: The objective was to better understand how people adapt multitasking behavior when circumstances in driving change and how safe versus unsafe behaviors emerge. Background: Multitasking strategies in driving adapt to changes in the task environment, but the cognitive mechanisms of this adaptation are not well known. Missing is a unifying account to explain the joint contribution of task constraints, goals, cognitive capabilities, and beliefs about the driving environment. Method: We model the driver’s decision to deploy visual attention as a stochastic sequential decision-making problem and propose hierarchical reinforcement learning as a computationally tractable solution to it. The supervisory level deploys attention based on per-task value estimates, which incorporate beliefs about risk. Model simulations are compared against human data collected in a driving simulator. Results: Human data show adaptation to the attentional demands of ongoing tasks, as measured in lane deviation and in-car gaze deployment. The predictions of our model fit the human data on these metrics. Conclusion: Multitasking strategies can be understood as optimal adaptation under uncertainty, wherein the driver adapts to cognitive constraints and the task environment’s uncertainties, aiming to maximize the expected long-term utility. Safe and unsafe behaviors emerge as the driver has to arbitrate between conflicting goals and manage uncertainty about them. Application: Simulations can inform studies of conditions that are likely to give rise to unsafe driving behavior.Description
| openaire: EC/H2020/637991/EU//COMPUTED
Keywords
computational rationality, driving, multitasking, reinforcement learning, task interleaving
Other note
Citation
Jokinen, J P P, Kujala, T & Oulasvirta, A 2021, ' Multitasking in Driving as Optimal Adaptation Under Uncertainty ', Human Factors, vol. 63, no. 8, 0018720820927687, pp. 1324-1341 . https://doi.org/10.1177/0018720820927687