Harmonic extension elements : Eigenproblems and error estimation

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2024-06-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

15

Series

Computers and Mathematics with Applications, Volume 163, pp. 27-41

Abstract

A non-intrusive extension to the standard p-version of the finite element method, so-called harmonic extension elements, is studied in the context of eigenproblems. The standard polynomial shape functions are replaced where appropriate with harmonic extensions of the boundary restrictions of the standard shape functions or solutions to a local Poisson problem. The reference elements are adapted to include extensions in order to ensure a conforming discretisation even if the meshes are not conforming. The hierarchic structure of the extension basis means that auxiliary space error estimators of the p-version of the finite element method are directly applicable. The additional computational workload in construction of the required extensions can be reduced using symmetries and multimesh techniques. The numerical experiments demonstrate the efficiency of the proposed extension resulting in exponential convergence in the quantities of interest if the mesh is properly graded.

Description

Publisher Copyright: © 2024 The Author

Keywords

Eigenproblems, Finite elements, Harmonic functions, hp-FEM

Other note

Citation

Hakula, H 2024, ' Harmonic extension elements : Eigenproblems and error estimation ', Computers and Mathematics with Applications, vol. 163, pp. 27-41 . https://doi.org/10.1016/j.camwa.2024.03.012