Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applications
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-07-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
14
Series
Green Chemistry, Volume 26, issue 11, pp. 6822-6835
Abstract
Cellulose-based fiber-reinforced composites are gaining attention for their eco-friendly attributes and cost-effectiveness. However, their application in high-strength domains remains limited due to the dominance of synthetic and inorganic fibers. This study explores the potential of composites utilizing “Ioncell fiber”, a unique cellulose fiber, in comparison to carbon, cellulosic, and glass fiber composites. Our findings reveal that Ioncell fiber composites exhibit earlier thermal degradation compared to carbon fiber composites according to thermogravimetric analysis (TGA). Analysis via scanning electron microscopy (SEM) highlights exceptional interaction between Ioncell fiber and bio-based epoxy, surpassing other fibers. Additionally, assessment of composite hydrophilicity or hydrophobicity through contact angle measurements reveals distinctive surface characteristics, with Ioncell exhibiting a contact angle of 80°, comparable to carbon fiber's contact angle of 75°, while glass transition results demonstrate Ioncell fiber's transformation closely resembling that of carbon fiber composites. Although Ioncell fiber exhibits lower strength (approximately 50 cN per tex) compared to carbon fiber (222 cN per tex), Ioncell composites demonstrate promising strength levels nearly half that of carbon fiber composites (approximately 230 MPa for Ioncell fiber composite compared to 500 MPa for carbon fiber composite). These results underscore the potential of Ioncell composites as sustainable alternatives to petroleum-based and synthetic fiber composites, thus contributing to a more environmentally sustainable future.Description
Keywords
Other note
Citation
Fazeli, M, Islam, S, Baniasadi, H, Abidnejad, R, Schlapp-Hackl, I, Hummel, M & Lipponen, J 2024, ' Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applications ', Green Chemistry, vol. 26, no. 11, pp. 6822-6835 . https://doi.org/10.1039/d3gc03637e