Forestry crane posture estimation with a two-dimensional laser scanner

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHyyti, Heikkien_US
dc.contributor.authorLehtola, Ville V.en_US
dc.contributor.authorVisala, Artoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorAutonomous Systemsen
dc.date.accessioned2018-12-10T10:36:31Z
dc.date.available2018-12-10T10:36:31Z
dc.date.issued2018-10-01en_US
dc.description.abstractCrane posture estimation is the stepping stone to forest machine automation. Here, we introduce a robust minimal perception solution, that is, one that uses minimal constraints for maximal benefits. Specifically, we introduce a robust particle-filter-based method to estimate and track the posture of a flexible hydraulic crane by using only low-cost equipment, namely, a two-dimensional (2D) laser scanner, two short magnetically attached metal tubes as targets, and an angle sensor. An important feature of our method is that it incorporates control signals for hydraulic actuators. In contrast to the previous works employing laser scanners, we do not use the full shape of the crane to estimate the crane posture, but, instead, we use only two small targets in the field of view of the laser scanner. Thus, a large share of the range data is useful for other purposes, for example, to map the surrounding environment. We test the proposed method in a challenging forest environment and show that the particle filter is able to estimate the posture of the hydraulic crane efficiently and reliably in the presence of occlusions and obstructions. During our comprehensive testing, the tip position was measured with average errors smaller than 4.3 cm whereas the absolute maximum error was 15 cm.en
dc.description.versionPeer revieweden
dc.format.extent25
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHyyti, H, Lehtola, V V & Visala, A 2018, 'Forestry crane posture estimation with a two-dimensional laser scanner', Journal of Field Robotics, vol. 35, no. 7, pp. 1025-1049. https://doi.org/10.1002/rob.21793en
dc.identifier.doi10.1002/rob.21793en_US
dc.identifier.issn1556-4959
dc.identifier.issn1556-4967
dc.identifier.otherPURE UUID: feea9bca-6d25-4b3c-bd73-e9beac7afeaeen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/feea9bca-6d25-4b3c-bd73-e9beac7afeaeen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85054386985&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/29466454/ELEC_Hyyti_etal_Forestry_Crane_JouFieFor_35_7_1025.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35375
dc.identifier.urnURN:NBN:fi:aalto-201812106390
dc.language.isoenen
dc.publisherWiley
dc.relation.ispartofseriesJournal of Field Roboticsen
dc.relation.ispartofseriesVolume 35, issue 7, pp. 1025-1049en
dc.rightsopenAccessen
dc.subject.keywordforestryen_US
dc.subject.keywordinstrumentationen_US
dc.subject.keywordlaser scanningen_US
dc.subject.keywordperceptionen_US
dc.subject.keywordposition estimationen_US
dc.titleForestry crane posture estimation with a two-dimensional laser scanneren
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files