Real-space electronic structure calculations for nanoscale systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTorsti, Tuomas
dc.contributor.departmentDepartment of Engineering Physics and Mathematicsen
dc.contributor.departmentTeknillisen fysiikan ja matematiikan osastofi
dc.contributor.labLaboratory of Physicsen
dc.contributor.labFysiikan laboratoriofi
dc.date.accessioned2012-02-10T08:46:32Z
dc.date.available2012-02-10T08:46:32Z
dc.date.issued2003-05-27
dc.description.abstractIn this thesis, basic research focused on quantum systems relevant for the future nanotechnologies is presented. The research is modeling based on electronic structure calculations using the density-functional theory. For the solution of the ensuing Kohn-Sham equations, we have developed a new numerical scheme based on the Rayleigh quotient multigrid method. While an important part of the thesis is formed by software development for three-dimensional first-principles real-space electronic structure calculations, we use axially symmetric model systems in the study of nanostructures. This approximation reduces the computational demands and allows studies of rather large nanoscale systems encompassing hundreds or thousands of electrons. In addition, by restricting the geometry to the axial symmetry and resorting to jellium models, many random effects related to the detailed ionic structure are absent, and the relevant physics is easier to extract from the simulations. Nanowires can be considered as the ultimate conductors in which the atomistic confinement of electrons perpendicular to the wire and the atomistic length of the wire lead to quantum mechanical effects in cohesive and transport properties. The breaking process of a nanowire is studied using the ultimate jellium model, in which the positive background charge compensates in every point the electronic charge. Thereby, the shape of the narrowing constriction is free to vary so that the total energy is minimized. The prospect of molecular electronics is to use single molecules as circuit components. The electronic transport in atomic chains of a few Na atoms between cone-shaped leads is investigated in the thesis. Electrons residing in a Na island on the Cu(111) surface form a quantum dot system, in which the quantum mechanical confinement in all directions determines the electronic properties. We have developed a simple jellium model system which reproduces the characteristics of the confined electron states seen in scanning tunneling microscope experiments.en
dc.description.versionrevieweden
dc.format.extent49, [45]
dc.format.mimetypeapplication/pdf
dc.identifier.isbn951-22-6470-6
dc.identifier.issn1455-1802
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/2082
dc.identifier.urnurn:nbn:fi:tkk-000504
dc.language.isoenen
dc.publisherHelsinki University of Technologyen
dc.publisherTeknillinen korkeakoulufi
dc.relation.haspartHeiskanen M., Torsti T., Puska M. J. and Nieminen R. M., 2001. Multigrid method for electronic structure calculations. Physical Review B 63, 245106, 8 pages. [article1.pdf] © 2001 American Physical Society. By permission.
dc.relation.haspartTorsti T., Heiskanen M., Puska M. J. and Nieminen R. M., 2003. MIKA: a multigrid-based program package for electronic structure calculations. International Journal of Quantum Chemistry 91, pages 171-176.
dc.relation.haspartHavu P., Torsti T., Puska M. J. and Nieminen R. M., 2002. Conductance oscillations in metallic nanocontacts. Physical Review B 66, 075401, 5 pages. [article3.pdf] © 2002 American Physical Society. By permission.
dc.relation.haspartOgando E., Torsti T., Puska M. J. and Zabala N., 2003. Electronic resonance states in nanowires during the breaking process simulated with the ultimate jellium model. Physical Review B 67, 075417, 11 pages. [article4.pdf] © 2003 American Physical Society. By permission.
dc.relation.haspartTorsti T., Lindberg V., Puska M. J. and Hellsing B., 2002. Model study of adsorbed metallic quantum dots: Na on Cu(111). Physical Review B 66, 235420, 10 pages. [article5.pdf] © 2002 American Physical Society. By permission.
dc.relation.ispartofseriesDissertations / Laboratory of Physics, Helsinki University of Technologyen
dc.relation.ispartofseries121en
dc.subject.keywordelectronic structureen
dc.subject.keyworddensity-functional theoryen
dc.subject.keywordmultigrid methoden
dc.subject.keywordparallel computingen
dc.subject.keywordjellium modelsen
dc.subject.keywordnanowireen
dc.subject.keywordquantum doten
dc.subject.otherPhysicsen
dc.titleReal-space electronic structure calculations for nanoscale systemsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotVäitöskirja (artikkeli)fi
dc.type.ontasotDoctoral dissertation (article-based)en
local.aalto.digiauthask
local.aalto.digifolderAalto_64059
Files
Original bundle
Now showing 1 - 5 of 5
No Thumbnail Available
Name:
isbn9512264706.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article1.pdf
Size:
141.09 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article3.pdf
Size:
241.38 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article4.pdf
Size:
167.06 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article5.pdf
Size:
832.47 KB
Format:
Adobe Portable Document Format