User profiling and classification for fraud detection in mobile communications networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHollmén, Jaakko
dc.contributor.departmentDepartment of Computer Science and Engineeringen
dc.contributor.departmentTietotekniikan osastofi
dc.contributor.labLaboratory of Computer and Information Scienceen
dc.contributor.labInformaatiotekniikan laboratoriofi
dc.date.accessioned2012-02-13T12:14:27Z
dc.date.available2012-02-13T12:14:27Z
dc.date.issued2000-12-19
dc.description.abstractThe topic of this thesis is fraud detection in mobile communications networks by means of user profiling and classification techniques. The goal is to first identify relevant user groups based on call data and then to assign a user to a relevant group. Fraud may be defined as a dishonest or illegal use of services, with the intention to avoid service charges. Fraud detection is an important application, since network operators lose a relevant portion of their revenue to fraud. Whereas the intentions of the mobile phone users cannot be observed, it is assumed that the intentions are reflected in the call data. The call data is subsequently used in describing behavioral patterns of users. Neural networks and probabilistic models are employed in learning these usage patterns from call data. These models are used either to detect abrupt changes in established usage patterns or to recognize typical usage patterns of fraud. The methods are shown to be effective in detecting fraudulent behavior by empirically testing the methods with data from real mobile communications networks.en
dc.description.versionrevieweden
dc.format.extent55, [53]
dc.format.mimetypeapplication/pdf
dc.identifier.isbn951-22-5239-2
dc.identifier.issn1456-9418
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/2311
dc.identifier.urnurn:nbn:fi:tkk-002567
dc.language.isoenen
dc.publisherHelsinki University of Technologyen
dc.publisherTeknillinen korkeakoulufi
dc.relation.haspartAlhoniemi, E., J. Hollmén, O. Simula, and J. Vesanto (1999). Process monitoring and modeling using the self-organizing map. Integrated Computer Aided Engineering 6(1), 3-14. [article1.pdf] © 1999 IOS Press. By permission.
dc.relation.haspartTaniguchi, M., M. Haft, J. Hollmén, and V. Tresp (1998). Fraud detection in communication networks using neural and probabilistic methods. In Proceedings of the 1998 IEEE International Conference in Acoustics, Speech and Signal Processing (ICASSP'98), Volume II, pp. 1241-1244. [article2.pdf] © 1998 IEEE. By permission.
dc.relation.haspartHollmén, J. and V. Tresp (1999). Call-based fraud detection in mobile communication networks using a hierarchical regime-switching model. In M. Kearns, S. Solla, and D. Cohn (Eds.), Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference (NIPS'11), pp. 889-895. MIT Press. [article3.pdf] © 1998 MIT Press. By permission.
dc.relation.haspartHollmén, J., V. Tresp, and O. Simula (1999). A self-organizing map for clustering probabilistic models. In Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN'99), Volume 2, pp. 946-951. IEE.
dc.relation.haspartHollmén, J., M. Skubacz, and M. Taniguchi (2000). Input dependent misclassification costs for cost-sensitive classification. In N. Ebecken and C. Brebbia (Eds.), DATA MINING II - Proceedings of the Second International Conference on Data Mining 2000, pp. 495-503. WIT Press. [article5.pdf] © 2000 WIT Press. By permission.
dc.relation.haspartHollmén, J. and V. Tresp (2000). A hidden Markov model for metric and event-based data. In Proceedings of EUSIPCO 2000 - X European Signal Processing Conference, Volume II, pp. 737-740. [article6.pdf] © 2000 EUSIPCO - 2000. By permission.
dc.relation.haspartHollmén, J., V. Tresp, and O. Simula (2000). A learning vector quantization algorithm for probabilistic models. In Proceedings of EUSIPCO 2000 - X European Signal Processing Conference, Volume II, pp. 721-724. [article7.pdf] © 2000 EUSIPCO - 2000. By permission.
dc.relation.ispartofseriesActa polytechnica Scandinavica. Ma, Mathematics and computing seriesen
dc.relation.ispartofseries109en
dc.subject.keywordfraud detectionen
dc.subject.keywordtelecommunicationen
dc.subject.keywordneural networksen
dc.subject.keywordprobabilistic modelsen
dc.subject.keyworddata analysisen
dc.subject.keyworddata miningen
dc.subject.otherElectrical engineeringen
dc.subject.otherComputer scienceen
dc.titleUser profiling and classification for fraud detection in mobile communications networksen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotVäitöskirja (artikkeli)fi
dc.type.ontasotDoctoral dissertation (article-based)en
local.aalto.digiauthask
local.aalto.digifolderAalto_64189

Files

Original bundle

Now showing 1 - 7 of 7
No Thumbnail Available
Name:
isbn9512252392.pdf
Size:
333.01 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article1.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article2.pdf
Size:
47.61 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article3.pdf
Size:
136.11 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article5.pdf
Size:
48.13 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article6.pdf
Size:
101.78 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article7.pdf
Size:
102.3 KB
Format:
Adobe Portable Document Format