All You Need Is "Love": Evading Hate Speech Detection

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
Conference article in proceedings
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2018
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
2-12
Series
Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security
Abstract
With the spread of social networks and their unfortunate use for hate speech, automatic detection of the latter has become a pressing problem. In this paper, we reproduce seven state-of-the-art hate speech detection models from prior work, and show that they perform well only when tested on the same type of data they were trained on. Based on these results, we argue that for successful hate speech detection, model architecture is less important than the type of data and labeling criteria. We further show that all proposed detection techniques are brittle against adversaries who can (automatically) insert typos, change word boundaries or add innocuous words to the original hate speech. A combination of these methods is also effective against Google Perspective - a cutting-edge solution from industry. Our experiments demonstrate that adversarial training does not completely mitigate the attacks, and using character-level features makes the models systematically more attack-resistant than using word-level features.
Description
| openaire: EC/H2020/688061/EU//TagItSmart
Keywords
Other note
Citation
Gröndahl, T, Pajola, L, Juuti, M, Conti, M & Asokan, N 2018, All You Need Is "Love": Evading Hate Speech Detection . in Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security . ACM, New York, pp. 2-12, ACM Workshop on Artificial Intelligence and Security, Toronto, Canada, 19/10/2018 . https://doi.org/10.1145/3270101.3270103