Bilateral Reference for High-Resolution Dichotomous Image Segmentation
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
CAAI Artificial Intelligence Research, Volume 3, pp. 1-12
Abstract
We introduce a novel bilateral reference framework (BiRefNet) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference, and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance the focus on regions with finer details. In addition, we outline practical training strategies tailored for DIS to improve map quality and the training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks. Our codes are publicly available at https://github.com/ZhengPeng7/BiRefNet.Description
Other note
Citation
Zheng, P, Gao, D, Fan, D-P, Liu, L, Laaksonen, J, Ouyang, W & Sebe, N 2024, 'Bilateral Reference for High-Resolution Dichotomous Image Segmentation', CAAI Artificial Intelligence Research, vol. 3, 9150038, pp. 1-12. https://doi.org/10.26599/AIR.2024.9150038