Mortaring for linear elasticity using mixed and stabilized finite elements

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2023-02-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

Computer Methods in Applied Mechanics and Engineering, Volume 404

Abstract

The purpose of this work is to study mortar methods for linear elasticity using standard low order finite element spaces. Based on residual stabilization, we introduce a stabilized mortar method for linear elasticity and compare it to the unstabilized mixed mortar method. For simplicity, both methods use a Lagrange multiplier defined on a trace mesh inherited from one side of the interface only. We derive a quasi-optimality estimate for the stabilized method and present the stability criteria of the mixed P1 - P1 approximation. Our numerical results demonstrate the stability and the convergence of the methods for tie contact problems. Moreover, the results show that the mixed method can be successfully extended to three dimensional problems.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Description

Funding Information: The work was supported by the Academy of Finland (Decisions 324611 and 338341 ) and the Portuguese government through FCT (Fundação para a Ciência e a Tecnologia) , I.P., under the projects PTDC/MAT-PUR/28686/2017 and UIDB/04459/2020 . Publisher Copyright: © 2022 The Author(s)

Keywords

Finite elements, Linear elasticity, Mortar methods, Tie contact

Other note

Citation

Gustafsson, T, Råback, P & Videman, J 2023, ' Mortaring for linear elasticity using mixed and stabilized finite elements ', Computer Methods in Applied Mechanics and Engineering, vol. 404, 115796 . https://doi.org/10.1016/j.cma.2022.115796