Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShen, Fuhuien_US
dc.contributor.authorMünstermann, Sebastianen_US
dc.contributor.authorLian, Junheen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationRWTH Aachen Universityen_US
dc.date.accessioned2020-03-13T15:25:45Z
dc.date.available2020-03-13T15:25:45Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-03-16en_US
dc.date.issued2020-03-15en_US
dc.description.abstractA hybrid experimental and numerical investigation has been conducted to comprehensively characterize the anisotropic plasticity and ductile fracture behavior of a high-strength pipeline steel. Tensile tests have been performed on various flat specimens along three different loading directions to collect the experimental mechanical data covering a wide range of stress states. For numercial modeling, the anisotropic plastic deformation is described by the evolving non-associated Hill48 (enHill48) plasticity model considering anisotropic/distortional hardening and evolution of r-value. Based on the enHill48 model, in this study, an anisotropic damage mechanics model with consideration of the evolution of anisotropy and stress states has been proposed and calibrated to predict the anisotropic damage and fracture of the investigated material. It is concluded that the anisotropic hardening is critical for an accurate prediction of the ductile fracture. The proposed model has achieved good predictive capability for anisotropic fracture behavior.en
dc.description.versionPeer revieweden
dc.format.extent23
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationShen, F, Münstermann, S & Lian, J 2020, 'Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model', Engineering Fracture Mechanics, vol. 227, 106900. https://doi.org/10.1016/j.engfracmech.2020.106900en
dc.identifier.doi10.1016/j.engfracmech.2020.106900en_US
dc.identifier.issn0013-7944
dc.identifier.issn1873-7315
dc.identifier.otherPURE UUID: c8fcbfb7-fa29-4ba2-bef9-3bc61d271078en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c8fcbfb7-fa29-4ba2-bef9-3bc61d271078en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/41462404/ENG_Shen_et_al_Investigation_on_the_ductile_Engineering_Fracture_Mechanics.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43462
dc.identifier.urnURN:NBN:fi:aalto-202003132503
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesEngineering Fracture Mechanicsen
dc.relation.ispartofseriesVolume 227en
dc.rightsopenAccessen
dc.subject.keywordAnisotropyen_US
dc.subject.keywordEvolving plasticity modelen_US
dc.subject.keywordDamageen_US
dc.subject.keywordDuctile fractureen_US
dc.subject.keywordPipeline steelen_US
dc.subject.keywordNONASSOCIATED FLOW RULEen_US
dc.subject.keywordSTRESS YIELD FUNCTIONen_US
dc.subject.keywordBAI-WIERZBICKI MODELen_US
dc.subject.keywordLOCALIZED NECKINGen_US
dc.subject.keywordFAILURE BEHAVIORen_US
dc.subject.keywordSTRAIN RATESen_US
dc.subject.keywordPLASTICITYen_US
dc.subject.keywordPREDICTIONen_US
dc.subject.keywordCRITERIONen_US
dc.subject.keywordEVOLUTIONen_US
dc.titleInvestigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics modelen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files