Numerical analysis of the bending strength of model-scale ice
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Cold Regions Science and Technology, Volume 118, pp. 91–104
Abstract
Performance simulation tools are of high significance for the design and especially the optimization of ships and offshore structures. However, for ice covered waters such tools are hardly available and are either costly as ice model tests or have a limited range of validity, such as semi-empirical formulas. This arises from the complexity of ice as material and insufficient knowledge on its mechanics. This paper presents a numerical analysis for model-scale ice in which material parameters are developed that can represent: tension, compression and in-situ downward bending. Those parameters are incorporated into a material model following the Lemaitre damage law. The developed material characteristics for model-scale ice are intended to support the design process of ships and offshore structures. The key phenomenon joining the deformation processes in bending together with those in compression and tension, proved to be the through thickness dependency of properties. This analysis and development is a continuation of previously presented parameters for compression and tension and is developed in agreement with experimental evidence.Description
VK: T20404
Other note
Citation
von Bock und Polach, R U F 2015, 'Numerical analysis of the bending strength of model-scale ice', Cold Regions Science and Technology, vol. 118, pp. 91–104. https://doi.org/10.1016/j.coldregions.2015.06.003