Probabilistic Framework for Integration of Mass Spectrum and Retention Time Information in Small Molecule Identification

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBach, Ericen_US
dc.contributor.authorRogers, Simonen_US
dc.contributor.authorWilliamson, Johnen_US
dc.contributor.authorRousu, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Rousu Juhoen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationUniversity of Glasgowen_US
dc.date.accessioned2020-12-31T08:45:34Z
dc.date.available2020-12-31T08:45:34Z
dc.date.issued2020-11-27en_US
dc.description.abstractMotivation Identification of small molecules in a biological sample remains a major bottleneck in molecular biology, despite a decade of rapid development of computational approaches for predicting molecular structures using mass spectrometry (MS) data. Recently, there has been increasing interest in utilizing other information sources, such as liquid chromatography (LC) retention time (RT), to improve identifications solely based on MS information, such as precursor mass-per-charge and tandem mass spectra (MS2). Results We put forward a probabilistic modelling framework to integrate MS and RT data of multiple features in an LC-MS experiment. We model the MS measurements and all pairwise retention order information as a Markov random field and use efficient approximate inference for scoring and ranking potential molecular structures. Our experiments show improved identification accuracy by combining MS2 data and retention orders using our approach, thereby outperforming state-of-the-art methods. Furthermore, we demonstrate the benefit of our model when only a subset of LC-MS features have MS2 measurements available besides MS1. Availability and implementation Software and data is freely available at https://github.com/aalto-ics-kepaco/msms_rt_score_integration.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBach, E, Rogers, S, Williamson, J & Rousu, J 2020, 'Probabilistic Framework for Integration of Mass Spectrum and Retention Time Information in Small Molecule Identification', Bioinformatics, vol. 37, no. 12, pp. 1724-1731. https://doi.org/10.1093/bioinformatics/btaa998en
dc.identifier.doi10.1093/bioinformatics/btaa998en_US
dc.identifier.issn1367-4803
dc.identifier.issn1367-4811
dc.identifier.otherPURE UUID: 9e49d7a2-8796-4f7c-bb1b-493d7d73d3ecen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9e49d7a2-8796-4f7c-bb1b-493d7d73d3ecen_US
dc.identifier.otherPURE LINK: https://github.com/aalto-ics-kepaco/msms_rt_score_integrationen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/54082893/Bach_Probabilistic_Framework.btaa998.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/101570
dc.identifier.urnURN:NBN:fi:aalto-2020123160391
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesBioinformaticsen
dc.relation.ispartofseriesVolume 37, issue 12, pp. 1724-1731en
dc.rightsopenAccessen
dc.titleProbabilistic Framework for Integration of Mass Spectrum and Retention Time Information in Small Molecule Identificationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files