Locally Diverse Constellations from the Special Orthogonal Group
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2016-06-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
IEEE Transactions on Wireless Communications, Volume 15, issue 6, pp. 4426-4437
Abstract
To optimize rotated multidimensional constellations over a single-input single-output Rayleigh fading channel, a family of rotation matrices is constructed for all dimensions which are a power of 2. This family is a one-parameter subgroup of the group of rotation matrices, and is located using a gradient descent scheme on this Lie group. The parameter defining the family is chosen to optimize the cutoff rate of the constellation. The optimal rotation parameter is computed explicitly for low signal-to-noise ratios. These rotations outperform full-diversity algebraic rotations in terms of cutoff rate at low signal-to-noise ratio (SNR) and bit error rate at high SNR in dimension n = 4. However, a quadrature amplitude modulation (QAM) constellation rotated by such a matrix lacks full diversity, in contrast with the conventional wisdom that good signal sets exhibit full diversity. A new notion of diversity, referred to as local diversity, is introduced to attempt to account for this behavior. Roughly, a locally fully diverse constellation is fully diverse only in small neighborhoods. A local variant of the minimum product distance is also introduced and is shown experimentally to be a superior predictor of constellation performance than the minimum product distance in dimension n = 4.Description
Keywords
capacity, cutoff rate, full diversity, Lie groups, non-uniform constellations, Rayleigh fading channel, rotated constellations
Other note
Citation
Karpuk, D A & Hollanti, C 2016, ' Locally Diverse Constellations from the Special Orthogonal Group ', IEEE Transactions on Wireless Communications, vol. 15, no. 6, 7433476, pp. 4426-4437 . https://doi.org/10.1109/TWC.2016.2541668