Seamless Replacement of UAV-BSs Providing Connectivity to the IoT

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHellaoui, Hameden_US
dc.contributor.authorYang, Binen_US
dc.contributor.authorTaleb, Tariken_US
dc.contributor.authorManner, Jukkaen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorInternet technologiesen
dc.contributor.organizationChuzhou Universityen_US
dc.contributor.organizationUniversity of Ouluen_US
dc.date.accessioned2023-02-01T09:09:55Z
dc.date.available2023-02-01T09:09:55Z
dc.date.issued2023-01-11en_US
dc.description| openaire: EC/H2020/857031/EU//5G!Drones
dc.description.abstractThis paper considers the scenario of Unmanned Aerial Vehicles (UAVs) acting as flying base stations (UAV-BSs) to provide network connectivity to ground Internet of Things (IoT) devices. More precisely, we investigate the issue where a UAV-BS needs to be replaced by a new one in a seamless way. First, we formulate the issue as an optimization problem aiming to maximize the minimum transmission rate of the served IoT devices during the UAV-BS replacement process. This is translated into jointly optimizing the trajectory of the source UAV-BS (the one to be replaced) and the target UAV-BS (the replacing one), while pushing the IoT devices to seamlessly transfer their connections to the target UAV-BS. We therefore consider a target replacement zone where the UAV-BS replacement can happen, along with IoT connections transfer. Furthermore, we propose a solution based on Deep Reinforcement Learning (DRL). More precisely, we introduce a Multi-Heterogeneous Agent-based approach (MHA-DRL), where two types of agents are considered, namely the UAV-BS agents and the IoT agents. Each agent implements a DQN (Deep Q-Learning) algorithm, where UAV-BS agents learn optimal policies to perform replacement while IoT agents learn optimal policies to transfer their connections to the target UAV-BS. The conducted performance evaluations show that the proposed approach can achieve near optimal optimization.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.identifier.citationHellaoui, H, Yang, B, Taleb, T & Manner, J 2023, Seamless Replacement of UAV-BSs Providing Connectivity to the IoT. in GLOBECOM 2022 - 2022 IEEE Global Communications Conference., 10001699, IEEE, pp. 3641-3646, IEEE Global Communications Conference, Rio de Janeiro, Brazil, 04/12/2022. https://doi.org/10.1109/GLOBECOM48099.2022.10001699en
dc.identifier.doi10.1109/GLOBECOM48099.2022.10001699en_US
dc.identifier.isbn978-1-6654-3541-3
dc.identifier.isbn978-1-6654-3540-6
dc.identifier.otherPURE UUID: 0b8fb236-de4c-498c-a844-cc5f1666e6b6en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0b8fb236-de4c-498c-a844-cc5f1666e6b6en_US
dc.identifier.otherPURE LINK: https://ieeexplore.ieee.org/document/10001699/en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85146946353&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://urn.fi/urn:nbn:fi-fe2023051143523en_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119516
dc.identifier.urnURN:NBN:fi:aalto-202302011866
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/857031/EU//5G!Dronesen_US
dc.relation.ispartofIEEE Global Communications Conferenceen
dc.relation.ispartofseriesGLOBECOM 2022 - 2022 IEEE Global Communications Conferenceen
dc.relation.ispartofseriespp. 3641-3646en
dc.rightsopenAccessen
dc.subject.keywordPerformance evaluationen_US
dc.subject.keywordDeep learningen_US
dc.subject.keywordBase stationsen_US
dc.subject.keywordQ-learningen_US
dc.subject.keywordHandoveren_US
dc.subject.keywordAutonomous aerial vehiclesen_US
dc.subject.keywordTrajectoryen_US
dc.titleSeamless Replacement of UAV-BSs Providing Connectivity to the IoTen
dc.typeA4 Artikkeli konferenssijulkaisussafi

Files