Coupled Modeling of Computational Fluid Dynamics and Granular Mechanics of Sand Production in Multiple Fluid Flow
No Thumbnail Available
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2024-12
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
Series
SPE Journal, Volume 29, issue 12, pp. 6934-6946
Abstract
Sand production is a significant issue in oil and gas fields with poorly consolidated formations, often involving the multiphase flow of reservoir fluids and solid particles. The multiscale mechanisms of sand production, particularly fluid flow and particle movement, remain poorly understood. This study investigates these mechanisms using a coupled computational fluid dynamics and discrete element method (CFD-DEM) modeling approach. Single and multiple fluid flows of water and heavy oil were simulated with increasing fluid injection velocities, leading to different sand production patterns. The simulation results were compared with experimental results from a large cylindrical specimen of weak artificial sandstone under similar loading conditions. The multiphase conditions created various localized flow and deformation patterns that influenced both fluid and solid production, resulting in shorter transient sand production periods. Microstructures and phenomena such as fingering and water coning were observed, associated with a critical flow rate below which oil displacement was uniform and no water breakthrough occurred. Higher fluid injection velocities and fluid viscosities resulted in greater drag forces, leading to progressive damage zones and explaining the occurrence of single or multiple staged sand production events. The evolution of the microscopic granular structure was visualized under the effect of transient sand production.Description
Publisher Copyright: Copyright © 2024 The Authors.
Keywords
Other note
Citation
Khamitov, F, Shabdirova, A, Kozhagulova, A, Nguyen, H M & Zhao, Y 2024, ' Coupled Modeling of Computational Fluid Dynamics and Granular Mechanics of Sand Production in Multiple Fluid Flow ', SPE Journal, vol. 29, no. 12, pp. 6934-6946 . https://doi.org/10.2118/223586-PA