Quantum jump approach to microscopic heat engines

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMenczel, Paul
dc.contributor.authorFlindt, Christian
dc.contributor.authorBrandner, Kay
dc.contributor.departmentCentre of Excellence in Quantum Technology, QTF
dc.contributor.departmentUniversity of Nottingham
dc.contributor.departmentDepartment of Applied Physicsen
dc.date.accessioned2020-11-30T08:10:28Z
dc.date.available2020-11-30T08:10:28Z
dc.date.issued2020-09-21
dc.description.abstractModern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems. Using the quantum jump approach to open-system dynamics, we show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles. By analyzing the single-jump statistics of thermodynamic fluxes such as heat and entropy production, we obtain a family of general bounds on the power of microscopic heat engines. Our new bounds unify two earlier results and admit a transparent physical interpretation in terms of single-photon measurements. In addition, these bounds confirm that driving-induced coherence leads to an increase in dissipation that suppresses the efficiency of slowly driven quantum engines in the weak-coupling regime. A nanoscale heat engine based on a superconducting qubit serves as an experimentally relevant example and a guiding paradigm for the development of our theory.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdf
dc.identifier.citationMenczel , P , Flindt , C & Brandner , K 2020 , ' Quantum jump approach to microscopic heat engines ' , PHYSICAL REVIEW RESEARCH , vol. 2 , no. 3 , 033449 . https://doi.org/10.1103/PhysRevResearch.2.033449en
dc.identifier.doi10.1103/PhysRevResearch.2.033449
dc.identifier.issn2643-1564
dc.identifier.otherPURE UUID: 0517efba-6db4-4210-b5fb-204ea6051e7e
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0517efba-6db4-4210-b5fb-204ea6051e7e
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53400733/Menczel_Quantum.PhysRevResearch.2.033449_1.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/61629
dc.identifier.urnURN:NBN:fi:aalto-2020113020474
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPHYSICAL REVIEW RESEARCHen
dc.relation.ispartofseriesVolume 2, issue 3en
dc.rightsopenAccessen
dc.subject.keywordFluctuations
dc.subject.keywordNonequilibrium and irreversible thermodynamics
dc.subject.keywordquantum coherence
dc.subject.keywordQuantum thermodynamics
dc.subject.keywordHeat engines
dc.titleQuantum jump approach to microscopic heat enginesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files