Diffusion-Driven Charge Transport in Light Emitting Devices

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKim, Iuriien_US
dc.contributor.authorKivisaari, Pyryen_US
dc.contributor.authorOksanen, Janien_US
dc.contributor.authorSuihkonen, Samien_US
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.date.accessioned2018-02-09T10:02:36Z
dc.date.available2018-02-09T10:02:36Z
dc.date.issued2017-12-12en_US
dc.description.abstractAlmost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active region (AR) inside a pn-junction. This has hindered the development of emitters utilizing nanostructured ARs located close to device surfaces such as nanowires or surface quantum wells. Modern DHJ III-N LEDs also exhibit resistive losses that arise from the DHJ device geometry. The recently introduced diffusion-driven charge transport (DDCT) emitter design offers a novel way to transport charge carriers to unconventionally placed ARs. In a DDCT device, the AR is located apart from the pn-junction and the charge carriers are injected into the AR by bipolar diffusion. This device design allows the integration of surface ARs to semiconductor LEDs and offers a promising method to reduce resistive losses in high power devices. In this work, we present a review of the recent progress in gallium nitride (GaN) based DDCT devices, and an outlook of potential DDCT has for opto- and microelectronics.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKim, I, Kivisaari, P, Oksanen, J & Suihkonen, S 2017, ' Diffusion-Driven Charge Transport in Light Emitting Devices ', Materials, vol. 10, no. 12, 1421, pp. 1-17 . https://doi.org/10.3390/ma10121421en
dc.identifier.doi10.3390/ma10121421en_US
dc.identifier.issn1996-1944
dc.identifier.otherPURE UUID: 99729366-c861-4768-9f0f-5cfaef6457dden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/99729366-c861-4768-9f0f-5cfaef6457dden_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/16408193/materials_10_01421.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/29917
dc.identifier.urnURN:NBN:fi:aalto-201802091414
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMaterialsen
dc.relation.ispartofseriesVolume 10, issue 12, pp. 1-17en
dc.rightsopenAccessen
dc.subject.keywordlight-emitting diodes (LEDs)en_US
dc.subject.keyworddiffusion injectionen_US
dc.subject.keywordlateral epitaxial overgrowthen_US
dc.subject.keywordselective-area growth (SAG)en_US
dc.titleDiffusion-Driven Charge Transport in Light Emitting Devicesen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files