Absorption refrigerators based on Coulomb-coupled single-electron systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorErdman, Paolo Andreaen_US
dc.contributor.authorBhandari, Bibeken_US
dc.contributor.authorFazio, Rosarioen_US
dc.contributor.authorPekola, Jukka P.en_US
dc.contributor.authorTaddei, Fabioen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorQuantum Phenomena and Devicesen
dc.contributor.organizationCNR-ENEA-EURATOM Associationen_US
dc.date.accessioned2018-08-30T06:42:56Z
dc.date.available2018-08-30T06:42:56Z
dc.date.issued2018-07-31en_US
dc.description| openaire: EC/H2020/742559/EU//SQH
dc.description.abstractWe analyze a simple implementation of an absorption refrigerator, a system that requires heat and not work to achieve refrigeration, based on two Coulomb-coupled single-electron systems. We analytically determine the general condition to achieve cooling-by-heating, and we determine the system parameters that simultaneously maximize the cooling power and cooling coefficient of performance (COP) finding that the system displays a particularly simple COP that can reach Carnot's upper limit. We also find that the cooling power can be indirectly determined by measuring a charge current. Analyzing the system as an autonomous Maxwell demon, we find that the highest efficiencies for information creation and consumption can be achieved, and we relate the COP to these efficiencies. Finally, we propose two possible experimental setups based on quantum dots or metallic islands that implement the nontrivial cooling condition. Using realistic parameters, we show that these systems, which resemble existing experimental setups, can develop an observable cooling power.en
dc.description.versionPeer revieweden
dc.format.extent1-10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationErdman, P A, Bhandari, B, Fazio, R, Pekola, J P & Taddei, F 2018, ' Absorption refrigerators based on Coulomb-coupled single-electron systems ', Physical Review B, vol. 98, no. 4, 045433, pp. 1-10 . https://doi.org/10.1103/PhysRevB.98.045433en
dc.identifier.doi10.1103/PhysRevB.98.045433en_US
dc.identifier.issn2469-9950
dc.identifier.issn1550-235X
dc.identifier.otherPURE UUID: de0d10fb-490c-4fcc-a506-d71e131c569cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/de0d10fb-490c-4fcc-a506-d71e131c569cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85051417481&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/27419696/PhysRevB.98.045433.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33618
dc.identifier.urnURN:NBN:fi:aalto-201808304744
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/742559/EU//SQHen_US
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 98, issue 4en
dc.rightsopenAccessen
dc.titleAbsorption refrigerators based on Coulomb-coupled single-electron systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files