Absorption refrigerators based on Coulomb-coupled single-electron systems
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Erdman, Paolo Andrea | en_US |
dc.contributor.author | Bhandari, Bibek | en_US |
dc.contributor.author | Fazio, Rosario | en_US |
dc.contributor.author | Pekola, Jukka P. | en_US |
dc.contributor.author | Taddei, Fabio | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Centre of Excellence in Quantum Technology, QTF | en |
dc.contributor.groupauthor | Quantum Phenomena and Devices | en |
dc.contributor.organization | CNR-ENEA-EURATOM Association | en_US |
dc.date.accessioned | 2018-08-30T06:42:56Z | |
dc.date.available | 2018-08-30T06:42:56Z | |
dc.date.issued | 2018-07-31 | en_US |
dc.description | | openaire: EC/H2020/742559/EU//SQH | |
dc.description.abstract | We analyze a simple implementation of an absorption refrigerator, a system that requires heat and not work to achieve refrigeration, based on two Coulomb-coupled single-electron systems. We analytically determine the general condition to achieve cooling-by-heating, and we determine the system parameters that simultaneously maximize the cooling power and cooling coefficient of performance (COP) finding that the system displays a particularly simple COP that can reach Carnot's upper limit. We also find that the cooling power can be indirectly determined by measuring a charge current. Analyzing the system as an autonomous Maxwell demon, we find that the highest efficiencies for information creation and consumption can be achieved, and we relate the COP to these efficiencies. Finally, we propose two possible experimental setups based on quantum dots or metallic islands that implement the nontrivial cooling condition. Using realistic parameters, we show that these systems, which resemble existing experimental setups, can develop an observable cooling power. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1-10 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Erdman, P A, Bhandari, B, Fazio, R, Pekola, J P & Taddei, F 2018, ' Absorption refrigerators based on Coulomb-coupled single-electron systems ', Physical Review B, vol. 98, no. 4, 045433, pp. 1-10 . https://doi.org/10.1103/PhysRevB.98.045433 | en |
dc.identifier.doi | 10.1103/PhysRevB.98.045433 | en_US |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 1550-235X | |
dc.identifier.other | PURE UUID: de0d10fb-490c-4fcc-a506-d71e131c569c | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/de0d10fb-490c-4fcc-a506-d71e131c569c | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85051417481&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/27419696/PhysRevB.98.045433.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/33618 | |
dc.identifier.urn | URN:NBN:fi:aalto-201808304744 | |
dc.language.iso | en | en |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/742559/EU//SQH | en_US |
dc.relation.ispartofseries | Physical Review B | en |
dc.relation.ispartofseries | Volume 98, issue 4 | en |
dc.rights | openAccess | en |
dc.title | Absorption refrigerators based on Coulomb-coupled single-electron systems | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |