TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJokinen, Emmien_US
dc.contributor.authorDumitrescu, Alexandruen_US
dc.contributor.authorHuuhtanen, Janien_US
dc.contributor.authorGligorijevic, Vladimiren_US
dc.contributor.authorMustjoki, Satuen_US
dc.contributor.authorBonneau, Richarden_US
dc.contributor.authorHeinonen, Markusen_US
dc.contributor.authorLähdesmäki, Harrien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife) - Research areaen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationSimons Foundationen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationFlatiron Instituteen_US
dc.date.accessioned2023-01-25T07:35:30Z
dc.date.available2023-01-25T07:35:30Z
dc.date.issued2023-01-01en_US
dc.description.abstractMotivation: T cells use T cell receptors (TCRs) to recognize small parts of antigens, called epitopes, presented by major histocompatibility complexes. Once an epitope is recognized, an immune response is initiated and T cell activation and proliferation by clonal expansion begin. Clonal populations of T cells with identical TCRs can remain in the body for years, thus forming immunological memory and potentially mappable immunological signatures, which could have implications in clinical applications including infectious diseases, autoimmunity and tumor immunology.Results: We introduce TCRconv, a deep learning model for predicting recognition between TCRs and epitopes. TCRconv uses a deep protein language model and convolutions to extract contextualized motifs and provides state-of-the-art TCR-epitope prediction accuracy. Using TCR repertoires from COVID-19 patients, we demonstrate that TCRconv can provide insight into T cell dynamics and phenotypes during the disease.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJokinen, E, Dumitrescu, A, Huuhtanen, J, Gligorijevic, V, Mustjoki, S, Bonneau, R, Heinonen, M & Lähdesmäki, H 2023, ' TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs ', Bioinformatics, vol. 39, no. 1, btac788 . https://doi.org/10.1093/bioinformatics/btac788en
dc.identifier.doi10.1093/bioinformatics/btac788en_US
dc.identifier.issn1367-4803
dc.identifier.issn1367-4811
dc.identifier.otherPURE UUID: c90c7d0a-61c0-4f4f-9e3e-bacc95115c46en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c90c7d0a-61c0-4f4f-9e3e-bacc95115c46en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85145955701&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/98446535/TCRconv_predicting_recognition_between_T_cell_receptors_and_epitopes_using_contextualized_motifs.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119173
dc.identifier.urnURN:NBN:fi:aalto-202301251527
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesBioinformaticsen
dc.relation.ispartofseriesVolume 39, issue 1en
dc.rightsopenAccessen
dc.titleTCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files