TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Jokinen, Emmi | en_US |
dc.contributor.author | Dumitrescu, Alexandru | en_US |
dc.contributor.author | Huuhtanen, Jani | en_US |
dc.contributor.author | Gligorijevic, Vladimir | en_US |
dc.contributor.author | Mustjoki, Satu | en_US |
dc.contributor.author | Bonneau, Richard | en_US |
dc.contributor.author | Heinonen, Markus | en_US |
dc.contributor.author | Lähdesmäki, Harri | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Lähdesmäki Harri | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Computational Life Sciences (CSLife) - Research area | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) - Research area | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.organization | Department of Computer Science | en_US |
dc.contributor.organization | Simons Foundation | en_US |
dc.contributor.organization | University of Helsinki | en_US |
dc.contributor.organization | Flatiron Institute | en_US |
dc.date.accessioned | 2023-01-25T07:35:30Z | |
dc.date.available | 2023-01-25T07:35:30Z | |
dc.date.issued | 2023-01-01 | en_US |
dc.description.abstract | Motivation: T cells use T cell receptors (TCRs) to recognize small parts of antigens, called epitopes, presented by major histocompatibility complexes. Once an epitope is recognized, an immune response is initiated and T cell activation and proliferation by clonal expansion begin. Clonal populations of T cells with identical TCRs can remain in the body for years, thus forming immunological memory and potentially mappable immunological signatures, which could have implications in clinical applications including infectious diseases, autoimmunity and tumor immunology.Results: We introduce TCRconv, a deep learning model for predicting recognition between TCRs and epitopes. TCRconv uses a deep protein language model and convolutions to extract contextualized motifs and provides state-of-the-art TCR-epitope prediction accuracy. Using TCR repertoires from COVID-19 patients, we demonstrate that TCRconv can provide insight into T cell dynamics and phenotypes during the disease. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 8 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Jokinen, E, Dumitrescu, A, Huuhtanen, J, Gligorijevic, V, Mustjoki, S, Bonneau, R, Heinonen, M & Lähdesmäki, H 2023, ' TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs ', Bioinformatics, vol. 39, no. 1, btac788 . https://doi.org/10.1093/bioinformatics/btac788 | en |
dc.identifier.doi | 10.1093/bioinformatics/btac788 | en_US |
dc.identifier.issn | 1367-4803 | |
dc.identifier.issn | 1367-4811 | |
dc.identifier.other | PURE UUID: c90c7d0a-61c0-4f4f-9e3e-bacc95115c46 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/c90c7d0a-61c0-4f4f-9e3e-bacc95115c46 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85145955701&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/98446535/TCRconv_predicting_recognition_between_T_cell_receptors_and_epitopes_using_contextualized_motifs.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/119173 | |
dc.identifier.urn | URN:NBN:fi:aalto-202301251527 | |
dc.language.iso | en | en |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | Bioinformatics | en |
dc.relation.ispartofseries | Volume 39, issue 1 | en |
dc.rights | openAccess | en |
dc.title | TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |