Electroluminescent cooling in intracavity light emitters: modeling and experiments
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sadi, Toufik | |
dc.contributor.author | Kivisaari, Pyry | |
dc.contributor.author | Tiira, Jonna | |
dc.contributor.author | Radevici, Ivan | |
dc.contributor.author | Haggren, Tuomas | |
dc.contributor.author | Oksanen, Jani | |
dc.contributor.department | Neurotieteen ja lääketieteellisen tekniikan laitos | fi |
dc.contributor.department | Department of Neuroscience and Biomedical Engineering | en |
dc.contributor.lab | Engineered Nanosystems | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.date.accessioned | 2019-05-08T09:01:28Z | |
dc.date.available | 2019-05-08T09:01:28Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We develop a coupled electronic charge and photon transport simulation model to allow for deeper analysis of our recent experimental studies of intracavity double diode structures (DDSs). The studied structures consist of optically coupled AlGaAs/GaAs double heterojunction light emitting diode (LED) and GaAs p–n-homojunction photodiode (PD) structure, integrated as a single semiconductor device. The drift–diffusion formalism for charge transport and an optical model, coupling the LED and the PD, are self-consistently applied to complement our experimental work on the evaluation of the efficiency of these DDSs. This is to understand better their suitability for electroluminescent cooling (ELC) demonstration, and shed further light on electroluminescence and optical energy transfer in the structures. The presented results emphasize the adverse effect of non-radiative recombination on device efficiency, which is the main obstacle for achieving ELC in III-V semiconductors. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 8 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Sadi, Toufik & Kivisaari, Pyry & Tiira, Jonna & Radevici, Ivan & Haggren, Tuomas & Oksanen, Jani. 2017. Electroluminescent cooling in intracavity light emitters: modeling and experiments. Volume 50, Issue 1. Optical and Quantum Electronics. 8. 0306-8919 (printed). DOI: 10.1007/s11082-017-1285-z. | en |
dc.identifier.doi | 10.1007/s11082-017-1285-z | |
dc.identifier.issn | 0306-8919 (printed) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/37839 | |
dc.identifier.urn | URN:NBN:fi:aalto-201712218332 | |
dc.language.iso | en | en |
dc.publisher | Springer Nature | en |
dc.relation.ispartofseries | Volume 50, Issue 1 | |
dc.relation.ispartofseries | Optical and Quantum Electronics | fi |
dc.rights | © 2017 Springer Nature. This is the post print version of the following article: Sadi, Toufik & Kivisaari, Pyry & Tiira, Jonna & Radevici, Ivan & Haggren, Tuomas & Oksanen, Jani. 2017. Electroluminescent cooling in intracavity light emitters: modeling and experiments. Optical and Quantum Electronics. Volume 50, Issue 1. 8. ISSN 0306-8919 (printed). DOI: 10.1007/s11082-017-1285-z, which has been published in final form at https://link.springer.com/article/10.1007/s11082-017-1285-z. | en |
dc.rights.holder | Springer Nature | |
dc.subject.keyword | Electroluminescent cooling | en |
dc.subject.keyword | Intracavity light emitters | en |
dc.subject.keyword | III-As | en |
dc.subject.keyword | Light-emitting diodes Photodiodes | en |
dc.subject.other | Electrical engineering | en |
dc.subject.other | Materials science | en |
dc.subject.other | Physics | en |
dc.title | Electroluminescent cooling in intracavity light emitters: modeling and experiments | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.dcmitype | text | en |
dc.type.version | Post print | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A1_sadi_toufik_2017.pdf
- Size:
- 724.15 KB
- Format:
- Adobe Portable Document Format