Stabilized entanglement of massive mechanical oscillators
No Thumbnail Available
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2018-04-26
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
5
Series
Nature, Volume 556, pp. 478-482
Abstract
Quantum entanglement is a phenomenon whereby systems cannot be described independently of each other, even though they may be separated by an arbitrarily large distance 1 . Entanglement has a solid theoretical and experimental foundation and is the key resource behind many emerging quantum technologies, including quantum computation, cryptography and metrology. Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons 2-5, ions 6 and electron spins 7, and more recently in microwave and electromechanical devices 8-10 . For macroscopic-scale objects 8-14, however, it is very vulnerable to environmental disturbances, and the creation and verification of entanglement of the centre-of-mass motion of macroscopic-scale objects remains an outstanding goal. Here we report such an experimental demonstration, with the moving bodies being two massive micromechanical oscillators, each composed of about 10 12 atoms, coupled to a microwave-frequency electromagnetic cavity that is used to create and stabilize the entanglement of their centre-of-mass motion 15-17 . We infer the existence of entanglement in the steady state by combining measurements of correlated mechanical fluctuations with an analysis of the microwaves emitted from the cavity. Our work qualitatively extends the range of entangled physical systems and has implications for quantum information processing, precision measurements and tests of the limits of quantum mechanics.Description
| openaire: EC/H2020/732894/EU//HOT
Keywords
Other note
Citation
Ockeloen-Korppi, C F, Damskägg, E, Pirkkalainen, J M, Asjad, M, Clerk, A A, Massel, F, Woolley, M J & Sillanpää, M A 2018, ' Stabilized entanglement of massive mechanical oscillators ', Nature, vol. 556, pp. 478-482 . https://doi.org/10.1038/s41586-018-0038-x